
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EFNMS 

COMMITTEE 

MAINTENANCE 4.0 

 

EUROPEAN FEDERATION OF NATIONAL 

MAINTENANCE SOCIETIES VZW 

 

 

MAINTENANCE 4.0 

GUIDELINE 



MAINTENANCE 4.0 GUIDELINE 

EFNMS COMMITTEE MAINTENANCE 4.0 

30 APRIL 2023 

EUROPEAN FEDERATION OF NATIONAL MAINTENANCE SOCIETIES VSW 

 

Copyright 2022 By the European Federation of National Maintenance Societies 

vsw. All right of reproduction are reserved. Reproduction or transmittal by the 

Individual Holder or outside the company for whom the holder of this document is 

employed, of any part of this document by electronic or mechanical means, including 

photocopying, microfilming, recording or by any information storage and retrieval 

system without the Express written consent of the EFNMS is prohibited. 

1. FOREWORD 
This booklet has been written by the Members of EFNMS COMMITTEE MAINTENANCE 

4.0 with the aim to provide the basic knowledges and Guidelines of the last advanced 

model in the scale of Maturity level of Maintenance Function named Maintenance 

4.0.Because the Maintenance Function in the incoming and long Industrial Transition 

time, has and will have a primary role to maintain and improve the characteristics and 

performances of physical assets in more severe constrains, the Maintenance 

Management is called to move from Maintenance 3.0 to Maintenance 4.0 with 

progressive and suitable implementation of Enabling Technology 4.0 and Artificial 

Intelligence Applications.In this manner the Maintenance Function in more productive 

way will continue to take care of Equipments, machinery and plants to ensure a better 

fundamental contribution to the Sustainability,Quality of life,Competitiveness and 

Growth of company in the framework of Envirorment Social Governance.ESG 

paradigma. 
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2. INTRODUCTION 

(adapted from original source reference 27) 

Twelve years after the introduction of the fourth industrial revolution, commonly Industry 4.0 

at the 2011 Hannover Fair, every type of physical, industrial and service good, including 

machines, plants, buildings, infrastructures, utilities, factories and social structures, is affected 

by Information Technology (IT) and digital innovation. 

The goal is to improve the production of goods and provide services that are better in every 

aspect. 

In recent years, the change has incorporated the ambitious goals of sustainable and 

competitive development, made possible by enabling technologies (Technology 4.0) and AI 

applications. 

Maintenance is called upon to use Open Innovation to implement excellent technical- 

organizational models, achievable through a Strategic Vision that includes four dimensions: 

1. Anticipation 

By anticipating the future, the criteria and methods of Maintenance Engineering can be revised 

to offer and implement technologically appropriate innovative solutions in the design, -

construction and installation of physical assets, equipping them right from the beginning, with 

characteristics of intrinsic structural and operational integrity and global monitoring systems, 

to achieve Sustainable and Competitive Operations for their entire life time. 

2. Permanent Education & Field Training 

There is a need to define new competences, improve job profiles, general and specific 

knowledge, expand work experiences, and develop hard and soft skills. The implementation of 

appropriate education plans will benefit the professional development of maintenance 

personnel. 

3. Assessment of Intensity of Technologies 4.0 

Companies need to prepare a Road Map of the innovative applications and the related benefits 

achievable from the processes and physical assets in place, using SWOT Analysis. (Strengths, 

Weaknesses, Opportunities, Threats). 

4. Performance Assurance. 

Technical-organizational models of excellence, will integrate design-operation and 

maintenance. Companies need to implement effective Preventive Maintenance strategies to 

ensure compliance with regulations and improve the performance of maintenance and 

operations. This is complex given the increased emphasis on recovery and resilience. 

Maintenance management is called on to play an innovative, integrative role and to be 

farsighted and professional in line with the concept of Environment Social Governance(ESG). 

In this context, the EFNMS Committee Maintenance 4.0 prepared “Maintenance 4.0 Guidelines” 

to provide the basic elements that will progressively develop maintenance sustainability in 



present and future plant configurations. The overarching aim was to achieve value through 

maintenance. 

3. PART I: THE INDUSTRIAL TRANSITION SCENARIO 

3.1. The Drivers of Growth 

(adapted from original source reference 15) 

The drivers of growth- and therefore of the future of companies, rest on the adoption and 

implementation of four essential pillars: 

1. Sustainability: there should be a balanced mix of social, environmental and economic 

factors. 

 

2. Competitiveness includes both Products and Services. 

 

3. Competences: human Competence should be developed and maximized. 

 

4. Innovation: organizational and technological innovations are on going and companies 

should take advantages of them. 

In all advanced economies, these are constantly evolving drivers, in an industrial 

infrastructural Transitional Scenario. Maintenance is called upon to contribute to this scenario. 

Maintenance, supports the fundamental values of industrial and infrastructural activities, 

including quality of life, Safety, Operational Integrity and Operational Availability of physical 

assets. A Culture of Prevention is required to throughout for the entire life cycle, to gain the 

benefits of enabling technologies, or what we call Technology 4.0. 

3.2. Industry 4.0 

Industry 4.0 or the fourth industrial revolution, features the application of the new enabling 

technologies. The term industry 4.0 was used for the first time by Henning Kagermann, Wolf 

Dieter Lukas and Wolfang Wahester at the Hannover Fair in September 2011. It was reinforced 

at the2016 World Economic forum and has since become ubiquitous. 

The applications of of enabling Technologies 4.0 can transform machines and plants into 

digitized, automatized, and interconnected assets thus achieving more sustainability and 

increasing competitiveness. 

This, in turn, will generate more value for products, services and lead to economy growth. 

The opportunities and benefits enabled by Technologies 4.0 affect almost every activity, 

including both such as social activities, industrial administration and business. 

Benefits are achievable in Research, Design, Engineering, Safety, Environment, Manufacturing, 

Operations, Maintenance, Logistic, Quality to name only few areas with an appropriate mix of 

Information and Communication Technology (ICT), Internet of Things (IOT)and artificial 

intelligence the 4.0 term, in few years has been used to point out an innovative and advanced 



era by many functions, etc. achievable with an appropriate mix of ICT+IOT and Artificial 

Intelligence. (AI): ICT+IOT+AI. 

3.3. A new paradigm 

Industry 4.0 is a new paradigm of industry and business that is supported by the adoption and 

use of new technologies that enable to develop: 

1. Intercommunication between things and things, people and things; 

2. Automation of physical and transactional operations; 

3. Virtualization of physical things and processes through Digital Tools. 

4. Externalization of human decisions to machines. 

This new paradigm implies the transformation of other aspects rather than the pure 

technology only, such as: Human resources model, Strategic business and Organizational 

models. 

3.4. The Global Trend of Technologies 4.0 Applications 

A plot of the latest trends in company functions and business adapted from original sources 

Gartner2020, a leading information technology research and advisory firm is shown in figure 

3.1. The figure shows the evolution in companies’ application of Technology in the ten years 

following the introduction of Industry 4.0 at Hannover Fair. 

 

 
Figure 3.1. Hype cycle innovative technologies 4.0 (adapted from original source gartner 

research (2020)). 

 

After the initial Hype and subsequent disillusionment, it shows and upward trend and suggests 

a favourable industrial transition. 



3.5. Maintenance 4.0 

Maintenance 4.0 is the application of Industry 4.0 paradigm to the maintenance function. The 

goal is to know in real time the state of health of the critical components of the physical assets, 

to optimize maintenance resources and increase the value of maintenance services through an 

integrated digital connection with plants and operations, thus ensuring sustainable and 

competitive development. It applies the new technologies for the following reasons: 

1. To predict failures and prescribe solutions before the failures occur, based on real-time 

monitoring of current condition of 

2. Assets and their systems, subsystems and components. 

3. To react and correct the failures, much faster than is possible with conventional means. 

In general, by adopting the Maintenance 4.0 paradigm, companies can speed up and optimize 

the performance of all maintenance operations. 

Maintenance 4.0 entails the transformation of the maintenance organization model, as well as 

the development the performance of all the possible maintenance Operations-It entails 
maintenance organizational model transformation as well as the development of new technical 

capabilities of maintenance organization and maintenance engineering to move Maintenance 

toward new models and above all to achieve excellent performance results from the Physical 

assets. The main characteristics of Maintenance 4.0 are summed up below. 

1. Goals 

Maintenance 4.0 It aims to maintain machine quality, by maintaining the asset’s technical 

specifications reducing probability of failures and downtime, easing maintenance actions by 

facilitating and integrating the application of Augmented Reality (AR), following up on the 

maintenance impact on company business and enhancing production continuity and company 

profitability and competitiveness. 

2. Performance 

Maintenance 4.0 gathers information from all maintenance related areas, such as machines, 

production, quality, energy, working environment and economy. Maintenance performance is 

digitalized and automated using a combination of probabilistic and deterministic approaches. 

3. Technology 

Maintenance 4.0 uses one or more condition monitoring sensors (to detect changes in asset 

condition), Augmented Reality (AR), Artificial Technology (AT), imbedded and wireless/wired 

sensors, data gathering boxes, software for automatic diagnosis, prediction and 

recommendation, modules to detect unhealthy sensors, actuators for conduct automatic 

actions, communication system, and the Cloud to support integration of maintenance with 

production processes. 

4. Regulation 

The measuring frequency needed for monitoring the condition of an asset is likely different for 

different components, machines, manufacturing/production process, produced products and 



failure consequences. It should be planned based on several factors, for example failure modes, 

failure consequences, production/manufacturing processes, nature, anticipate deterioration 

rate, etc. 

3.6. Overview of Technologies 4.0 Applicable to Maintenance 

Simply stated, Technologies4.0 refers to the study of machines, materials, technical processes 

and resources necessary in the application of scientific knowledge to produce objects, perform 

services and improve the sustainability and competitiveness of physical assets. 

This booklet applies the concept of Technologies 4.0 applicable to Maintenance activities in the 

context and compliances with current regulations. The figure 3.2 shows an overview of the 

main enabling Technologies operational in Technology 4.0 as these apply to Maintenance 4.0. 

As the figures suggests Maintenance 4.0 is data driven (adapted from original source Reference 

7). 

 

 

Figure 3.2. The 12 enabling technologies 4.0 for maintenance 4.0 (adopted from original 

source see original Reference 7). 

 

3.7. Benefits Using Technologies 4.0 In Maintenance 

The Figure 3.3 (adapted from original source Reference 16) summarizes the quantitative and 

qualitative main average values of the benefits that can be obtained with the implementation 

of 4.0 technologies, as these are found in the literature. 

 



 

Figure 3.3. Benefits from technologies 4.0 to maintenance-operation-safety-quality- logistic 

(adapted from original source see reference N° 16). 

 

The benefits relate both to the performance of the physical assets maintained and to the 

productivity and quality of maintenance services. 

3.7.1. Benefits On Maintenance Performance 

By adopting technologies 4.0 (see Figure 3.3), It is possible to achieve the following benefits: 

1. Advanced Preventive Maintenance strategies based on the systematic use of the 

Machine, Learning(ML) developed by integrated sensors. 

 

2. A capability to analyse big data in real time and optimize quantitative and qualitative 

actions using appropriate algorithms. The information related to the characteristics of 

the physical state and the expected evolution of the degradation of the Components of 

critical and sub-critical machines and plants is fundamental to implement targets and 

preventive plans, in relation to descriptive, predictive, prescriptive, prognostic 

modalities, and thus determine the optimal mix of maintenance actions. 

 

3. An ability to create spare parts using Additive Manufacturing Technology (3 D printing) 

thus increasing maintainability reducing inventory levels. 

 

4. A consistence maintenance costs reduction by optimizing optimization preventive 

maintenance and consequent failures reduction saving man-hours materials and spare 

parts. 



3.7.2. Benefits On Operation Performance and Processes 

1. Qualitative and quantitative advantages in Safety, Environment, capacity utilization, 

process yield, productivity, quality, warehousing, inventory reduction, supply chain, 

logistics, etc. 

 

2. Consequent cost reductions in each operational phase. 3.Significant improvement in 

quality of products services 

3.7.3. Benefits On Maintenance Engineering 

In line with the required highest sustainability during the entire life cycle, it is easier to: 

1. Identify the weak points of equipment and plants in term of safety and environmental 

risks, integrity, low operational availability, studies, to choice the most profitable. 

 

2. Carry out studies and choose the most profitable technical improvements. 

3.7.4. Benefits to Maintenance Servitization 

Maintenance Servitization refers to new modalities whereby maintenance services are offered 

by the machine providers or specialized contractors. 

The aim is to understand and satisfy the customer’s needs, in the best possible technical and 

economical ways, for the interest life of physical assets. These services include maintenance 

control of physical assets either remotely or in place using technologies encompassed by 

technologies 4.0, based on a Service Level Agreement between the contractor and the company, 

and measured by key Performance Indicators (KPI’s) (see paragraph 6.7). 

3.7.5. Benefits to Circular Economy Projects 

To protect the Environment in line with the sustainability Paradigm, Maintenance 4.0 will 

include useable parts or components of old or obsolete physical asset, using appropriate 

knowledge of the physical characteristics. Assets may also be repaired or remanufactured. 

These efforts must be integrated with operations and other company functions. 

3.8. From Maintenance 3.0 To Maintenance 4.0 
The transition from Maintenance 3.0 to 4.0 includes using and updating the fundamental skills 

of Maintenance Engineering and Industrial Engineering relevant to the organization, as well as 

adding new knowledge and hard and soft skills to achieve the necessary competences to define 

a Road Map progressively and according to priority of benefits obtainable by Technology 4.0 

practices (adapted from original sources 2, 3, 7). 

Maintenance 4.0 involves a transition through a process of continuous Innovative 

improvements measured by KPIs. Maintenance 4.0 is no longer simply an opportunity opening 

a new era for which, in order to be such, must make the transition through Rather, it is a vital 

requirement to achieve important benefits. Moreover, there are currently strong economic 

incentives to accelerate the industrial transition and counteract the slowdown caused by the 

Covid -19 pandemic. 



4. PART II: GLOSSARY 

This section includes the Terminologies, Concepts and highlights of Maintenance 4.0 

Technologies and related enabling factors. 

4.1. Additive Manufacturing-3D Printing 

Additive manufacturing refers to the capability to create three dimensional physical objects 

and spare parts from a digitally encoded design through the deposition of materials, usually in 

layers (see paragraph 5.32). 

4.2. Advanced Human Machine Interface (HMI) 

Thanks to wearable and new human - machine interfaces (HMI) and conversational interfaces 

that allow the acquisition and / or transmission of information in voice, visual and tactile 

format, Human Machine Interface (HMI) is at an advanced stage that includes consolidated 

systems, such as touch displays, 3D scanners for gesture reading and Augmented Reality (AR) 

viewers with superimposed and peripheral vision. The Advanced HMI allows the development 

of performance Support Systems and interactive technical manuals, in the form of solutions 

that support operational activities and operator training. 

4.3. Advanced Materials 

Advanced materials, also called Smart Materials, have engineered properties created through 

the development of specialized processing and synthesis technology through 

nanotechnologies, producing value-added metals, electronic materials, composites, polymers, 

and biomaterials. 

Self-healing materials are an emerging class of smart materials, capable of 

autonomous/spontaneous or stimulated repair of their damage under external stimuli, such as 

mechanical stress, temperature, humidity, ph light, solvents, electric or magnetic field. etc. See 

paragraph 5.37. 

4.4. Artificial Intelligence 

Artificial Intelligence (AI) refers to the application of advanced analysis and logic-based 

techniques to transform data into information that enable HMI and Machine to machine 

(M2M) autonomous decisions and actions. The goal is to provide the computer with 

performance that to a common observer would seem to be an exclusive responsibility of 

human intelligence. See paragraphs 5.16, 5.17. 

4.5. Augmented Reality (AR) 

Augmented Reality (AR) refers to the real-time use of information in the form of text, graphic, 

audio and other virtual enhancements superimposed on real-world objectives. See paragraph 

5.26.1. 



4.6. Big Data 

Big Data refers to the huge amount of data (higher than terabytes) collected, characterized by: 

high data velocity, large amount of data, data complexity, high variety and high veracity 

(accuracy). Big Data come from computers networks, sensors, and wearable devices, among 

others. The data are transformed into intelligent information suitable o improve performances 

in terms of safety, sustainability, productivity, etc. See paragraph 5.8. 

4.7. Big Data Analytics 

BIG data analytics refers to the use big data to perform descriptive, predictive and prescriptive 

analysis in a short time, see paragraph 5.10. 

4.8. Building Information Model (BIM) 

A Building Information Model (BIM) is important for information management. it is a working 

method defined in the context of a culture of collaboration and integrated practice through 

appropriate software, and it represents a profound transformation that affects design, 

construction operations, maintenance and asset management processes. See paragraph 5.30. 

4.9. Cloud Computing 

Cloud computing enables the on-demand delivery of IT resources and capabilities over the 

Internet with pay-as- you-go pricing. Instead of buying, owning, and maintaining physical data 

centers and servers, company can access technology services, such as computing power, 

storage, databases, on an as-need basis from a cloud supplier. See paragraph 5.2. 

4.10. Collaborative Robots 

Collaborative Robots are specifically designed for direct interaction with a human within a 

defined safeguarded workspace where both (the robot and the human) can perform tasks or 

processes simultaneously during automatic operations. Unlike autonomous robots, which 

work largely alone and without supervision, collaborative robots are designed and planned to 

work with human instruction, or otherwise respond to human behaviours and actions. See 

paragraph 5.34. 

4.11. Computer Vision 

Computer Vision is a field of computer science that works on enabling computers to see, 

identify and process images in the same way as human vision does, and then provide 

appropriate output. Machines equipped with computer vision will be able to categorize shapes, 

colours and texture into meaningful groups. For this purpose, the computer must interpret 

what it sees and then perform appropriate analysis or act accordingly. See paragraph 5.25. 

4.12. Cyber Security & Block Chain 

Cybersecurity is the combination of people, policies, processes and technologies employed by 
an enterprise to protect its cyber assets from being stolen, compromised or attacked. 



It requires an understanding of powerful information threats, such as viruses and other 

malicious codes. 

Cybersecurity strategies include identity management, risk management and incident 

management. They are optimized to levels defined by business leaders balancing the resources 

required with usability/manageability and the amount of acceptable risk. 

A block chain is a network of distributed ledgers that provides cryptographically signed, 

irrevocable transactional records shared by all participants in a network. Each record contains 

a timestamp and reference links to previous transactions. In this digital register, documents 

are grouped into blocks set chronological order. Its integrity is guaranteed by the use of 

cryptography. Once written, its content can no longer be modified or eliminated 

without invalidating the entire structure. With this information, anyone with access rights can 

trace a transactional event belonging to any participant, at any point in its history. 

A block chain promotes decentralization, transparency and data integrity. See paragraph 5.35. 

4.13. Data Science 

Data Science refers to the collective processes, theories, concepts, tools and technologies 

That enable the record, store, review, analysis and extraction of valuable knowledge and 

information from raw data, in order to help people and organizations make better decisions 

from the stored, consumed, and handled data. See paragraph 5.6. 

4.14. Data Mining 

Data mining refers to a set of data science techniques and methodologies that extract useful 

information from large quantities of data through algorithms and advanced technologies, 

based on artificial neural networks, machine learning and artificial intelligence techniques. 

In order to adopt the best strategies, the main models are: 

 The Descriptive Model: allows to group historical data of users who have had the same 
behaviour or physical asset. 

 

 The Predictive Model: grouping the data so that it is possible to estimate/predict future 
scenarios or results. 

4.15. Digitalization 

Digitalization refers the use of digital technologies. Digitalization allows companies to change 

their organizational model and provides opportunities in terms of creating value. 

Digitization is the cultural, organizational and operational change of a company, activity or 

economic ecosystem that occurs through the conscious integration of digital technologies, 

processes and skills throughout all business processes in a gradual and strategic way. 



4.16. Digital Twin (DT) 

A digital twin (DT) is a virtual representation of a real-world physical entity or group of 

interrelated physical assets (machine, plants, buildings). 

DT allows real time simulation of behaviours and scenarios via updated real-time data 

collected from several sources and integrated in a digital model. 

It can be used for prognosis (i.e., how the physical object will be having in the real world). AS 

such, it provides reliable information for optimal decision making, optimize preventive 

maintenance, enables maintenance improvements and can be used for reverse engineering to 

maintain optimal operational integrity and extend asset life. See paragraph 8. Digital twin 

approach for…. 

4.17. Drones 

A Drone (or an "Unmanned Aerial Vehicle": UAV) refers to an unpiloted aircraft or spacecraft. 

Drones are "remotely piloted aircraft" (APR), i.e. flying devices which, however, have no pilot 

on board, i.e. they are piloted by an on-board computer or by a pilot who guides them remotely 

with a radio control. They are also classified as Remotely Piloted Systems (RPS). See paragraph 

5.28. 

4.18. Edge Computing 

Edge computing is an extension of cloud computing technology. While cloud computing 

involves processing and storing data in centralized data centers, edge computing involves 

processing data on local devices, such as smartphones, sensors or IoT devices, closer to the 

data source. 

Edge computing is the information processing or other network operations away from 

centralized and always-connected network segments, and toward individual sources of data 

capture called edges, that are the physical locations where things and people connect with the 

digital network (laptops, tablets or smartphones, etc.). 

Edge computing is part of a distributed computing topology where information processing is 

located close to the edge, where things and people produce or use that information. 

Edge computing is a distributed computing model in which data processing takes place as close 

as possible to where the data is requested or on the machine. See paragraphs 5.3, 5.5. 

4.19. Fog Computing 

Fog is an informatics architecture that uses one or many user devices, or located near the user 

at the edge of the network, to perform a substantial amount of data storage, communication 

and management operations. Fog Computing extends the Cloud to be closer to the things that 

produce and act on IoT data. These devices, called fog nodes, can be deployed anywhere with 

a network connection: in a factory, on top of a power pole, along a railroad track, in a vehicle, 

or train. Any device with computing, storage and network connectivity can be a fog node. See 

paragraphs 5.4 and 5.5. 



4.20. Immersive Technologies 

Immersion in Virtual Reality (VR) is the perception of being physically in a non-physical world. 

Perception is created by surrounding the user of the VR system in images, sounds or other 

stimuli which provide a compelling total environment. It is defined as the subjective feeling of 

a person to be present in a virtual scenario, within which he will have to operate to carry out 

work, checks, etc. represented in a virtual scenario before and during the operations. See 

paragraph 5.26. 

4.21. Internet of Every Thing 

Indicates "the Internet of the whole", going beyond the topic of interconnected devices; 

everything from people to objects to processes are connected to each other. We therefore 

speak of a hyper-connected world, which contains four categories: humans, industrial world, 

things (data and people) see paragraph 5.1. 

4.22. Internet of Humans 

It means "Internet of human beings" and refers to the direct or indirect interactions between 

devices and people, generating a set of information useful for understanding and improving 

the lives of human being see paragraph 5.18. 

4.23. Industrial Internet of Things (IoIT) 

It represents an alternative definition to the applicability of technologies inherent to the 

Internet of Things, applied to the world of industry. Less known and used than the Internet of 

Things (IOT), it is an application of the latter within the 4.0 industrial context. IOT and IIOT 

(Industrial Internet of Things) are not interchangeable synonyms, since the second term is 

related to the physical asset maintenance, operation and business. See paragraph 5.1. 

4.24. Internet of Things (IoT) 

It is the network of physical entities (objects, mechanical and digital machines) that contain 

embedded technology to communicate and sense or interact with their internal states or the 

external environment (other entities, people). All these connected and interrelated things have 

Unique Identifiers (UIDs) and the ability to transfer data over a network without requiring 

human to human or human to computer interactions. 

A thing in the internet of things can be: a person with a heart monitor implant, a CNC machining 

center that has built-in sensors to alert the operator when the cutting tool has reached an 

inadequate level of wear. 

4.25. Interoperability 

It is the ability of two or more systems, applications, networks, means or components, to 

exchange information with each other and then be able to use them. It is applied to different 

sectors and above all in Machine to Machine (M2M) applications. See paragraph 5.31. 



4.26. Machine Learning (ML) 

It is an Artificial Intelligence subject that transforms data into information automatically such 

as cluster data, classification data and data prediction based on mathematical models, mostly 

supported by computer algorithms. There are several types of learning related to the various 

kinds of processes, technologies and physical assets in order to optimize the Maintenance 

Performances. See paragraphs 5.21, 5.23. 

4.27. Machine Deep Learning 

Deep Learning (also known as deep structured learning or hierarchical learning), is part of 

learning methods based on the assimilation of data representations, as opposed to algorithms 

for performing specific tasks. 

By applying Deep Learning, we will therefore have a "machine" that is able to autonomously 

classify data and structure them, hierarchically finding the most relevant and useful ones for 

solving a problem (exactly as the human mind does), improving its performance with 

continuous learning. See paragraph 5.23. 

4.28. Machine to Machine (M2M) 

Machine-to-Machine (M2M) is a process that implies wireless data transmission between two 

or more physical assets (mechanical or electronic devices) to share information and perform 

actions without the manual assistance of humans. This system typically consists of embedded 

wireless sensors that are installed in each device, allowing them to communicate and exchange 

data with each other automatically or as requested by an application, over long distances, see 

4.25 Interoperability 

The main components of an M2M system include sensors, RFID, Wi-Fi or cellular 

communications link, and computing software programmed to help a network device interpret 

data and make decisions. These M2M applications translate the data, which can trigger pre-

planned, automated actions. See paragraph 5.31. 

4.29. Mechatronics 

Mechatronics is the discipline that studies how to make many disciplines interact as: 

mechanics robotics, electronics, computer engineering and information technology in order to 

automate processes, productions and service systems in the best way to increase sustainability 

and competitiveness. See paragraph 5.36. 

4.30. Manufacturing Execution System (MES) 

Indicates a computerized system that has the main function of managing and controlling the 

production functions of a company. The management involves the dispatch of orders, 

advancements in quantity and time, the payment to the warehouse, as well as the direct 

connection to the machinery to deduce useful information, to integrate the execution of 

production and to produce information for the control of production. 



4.31. Mixed Reality 

It is an immersive technology that enables the integration of physical and virtual worlds that 

includes both real and computer-generated objects. The two worlds are "mixed" together to 

create a realistic environment that combines aspects of virtual reality (VR) and augmented 

reality. See paragraph 5.26.3. 

4.32. Nanotechnology 

Nanotechnology, also called nanotech, in the contest of computer science, is a type of 

engineering whose aim is to build electronic components and devices conducted at the 

nanoscale (1 to 100) nanometers). Nanotechnology facilitates the building of Functional Matter 

and Systems at the scalar level of an atom or molecule. It incorporates concepts from physics, 

biology, engineering and many other disciplines (see paragraph 5.37). 

4.33. Natural Language Processing 

Natural Language Processing (NLP) technology automates the translation processes between 

computers and humans. It involves the ability to turn text or audio speech into encoded 

structured information. The ultimate goal of NLP is to build software that will analyse, 

understand and generate human language naturally, enabling communication with a computer 

as if it were a human. 

4.34. Predictive Maintenance System 

It is a system that, thanks to the use of specific hardware, sensors and predictive algorithms 

and the use of enabling technologies in the IoT field (Big data, Cloud computing, Machine 

Learning), allows users to maximize effectiveness of preventive maintenance activities, 

intervening remotely and reducing downtime and maintenance costs. Predictive maintenance 

combines offline measurement through Predictive technology (vibration, noise, thermometry, 

oil analysis of line measurements, with continuous measurement named Condition Monitoring 

Systems on line. See paragraph 5.13. 

4.35. Predictive Behavioural Analytics 

It allows you to manage real-time analytics relating to user behaviour and to develop business 

or production actions directly resulting from these analytics. In Industry 4.0, Predictive 
Behavioural Analytics is used to implement a design method directly linked to user behaviour. 

The very first result of Predictive Behavioural Analytics is in Predictive Maintenance which 

analyses the behaviour of means of production and products and the behaviour of operators 

and consumers in the use of products. Behavioural analysis focuses on understanding the 

relationship between consumers and products. 

4.36. Prognostic Health Management 

The Prognostic Health Management (PHM) is a means for making accurate assessments on an 

on-going basis of the State of Health (SoH), as well as providing high quality estimates of the 

Remaining Useful Life (RUL) of the system. The PHM is an evolution of the CBM, and performs 

RUL and SOH prediction for the equipment and components that are being monitored 



considering extreme stress operating conditions rather than normal operating conditions. See 

paragraph 5.20. 

4.37. Radio Frequency Identification (RFID) 

Fore runner of the IoT, it represents a technology for the identification and automatic reading 

of data associated with certain objectives, persons and products. The RFID provides for the 

storage of data thanks to tags or real electronic labels (or transponders), that communicate 

remotely with the Reader, through radio devices that write and read data directly on the labels. 

4.38. Servitization 

The term Servitization is the transposition of the English word Servitization, composed of 

“service” and “ization” that means, service and implementation. 

The concept behind what is called Servitization is the transition from a product-centric model 

to a customer-centric model in which service is the cornerstone. In other words, we are 

witnessing a change in equilibrium at a strategic level in the importance given to the customer 

with respect to the weight given to the products. See paragraph 6.7. 

4.39. Smart Home 

It is the application of a set of technologies 4.0, based on computer and electronic engineering, 

with the aim of integrating a series of devices, capable of automating and simplifying the daily 

actions of a home or building optimizing the energy consumption, security, operation and 

maintenance needs. 

4.40. Smart IoT Sensors 

Internet of Things sensors equipped with computing capacity and in addition to collecting and 

transmitting data from the physical environment, or from the equipment to which they are 

associated, they perform calculation functions. It is an IoT capable of returning processed data 

or with a sort of "pre" processing, can already be used to perform actions on the machines 

themselves or to transmit more elaborate information to central systems. 

4.41. Smart Factory 

Manufacturing company that implements digital solutions designed to monitor all production 

processes, to track both semi-finished and finished products along the Fully Integrated Supply 

Chain. The Smart Factory is based on IoT and Real-Time Analytics and allows you to increase 

efficiency and change the relationship with customers and business models. 

4.42. Smart Grid 

New concept of energy production and management. The smart grid is an intelligent electricity 

network that, thanks to IoT sensors, measures the energy efficiency of the equipment of users 

and monitors their consumption, "corrects" their consumption and manages the production of 

energy according to the quantity actually needed. 



4.43. Smart Maintenance 

It is the part of Maintenance 4.0 consisting of the digitalization of maintenance activities direct 

and indirect, through CMMS, IOT, the supporting technologies for remote works, the use of 

wearables and the predictive advanced technologies, to improve safety, productivity, 

maintainability and operational availability of physical assets. 

4.44. Smart Manufacturing 

It is a new interpretation of manufacturing that thanks to digital technologies can increase their 

competitiveness and efficiency with the digital interconnection of all assets: machines, human 

resources and supply chain. 

4.45. Vertical and Horizontal Integration 

Vertical integration is the implementation of specific information and management systems, 

capable of interacting and exchanging information through those involved in the internal 

production chain. 

Horizontal integration is the implementation of specific information and management systems, 

capable of interacting with other functions or external companies, distributors and suppliers 

operating in the supply chain. See paragraphs 6.2, 6.3, 6.4. 

4.46. Wearable Technologies 

They are wearable devices and sensors. They are an example of IoT since they make part of 

physical objects (such as watches and smart bracelets) or "things" integrated with electronics, 

software, sensors and connectivity to allow objects to collect and exchange quantities of data 

with a manufacturer, an operator or other connected devices without requiring human 

intervention. This type of technology detects and monitors the body's internal and external 

biological signals, as well as emotional ones (see paragraphs 6.9., 6.10). 

 

 

 

 

 

 

 

 

 

 



5. PART III: TECHNOLOGIES 4.0 AND ENABLING FACTORS 

5.1. Industrial Internet of Things (IIoT) 

The term Industrial Internet of Things (IIoT) represents the industrial concept of an Internet 

of Things (IoT), as opposed to the consumption-oriented IoT concept. The Industrial IoT is a 

trend that, along with many other IT technologies, serves to improve operational effectiveness 

and is the networking basis to implement Technologies 4.0 in Industry, Operations, 

Maintenance, etc. 

Industrial internet of things (IIoT) is a subset of the more generic industrial internet of things 

(IoT). There is a clear difference between use cases in industrial application and the basic idea 

of connecting a “thing to the internet”. 

The basis for the IIoT was the invention of programmable logic controllers (PLCs), which made 

it possible to flexibly control individual elements in the manufacturing chain. With the 

enforcement of cloud technology in the early 2000s and the development of the OPC/UA 

protocol, it became possible to store data and transfer it securely between different devices. 

Thus the IIOT was born. 

This refers to digitally networked, intelligent machines or systems in an industrial context, as 

maintenance. The objective is efficient, self-organized maintenance in which machines, plants, 

processes and people communicate and cooperate with each other. This networking is 

intended to optimize the entire value chain of the physical assets during all the life Industrial 

internet of things, commonly refers to a sensor, instruments and other inter connecter and 

networked devices that have ability to communicate to achieve a benefit of use. 

An IIoT network consists of smart devices that communicate via the Internet data as a service 

(DaaS The networks and systems made up of them can monitor, collect, exchange and analyse 

data. The insights gained provide processes control to achieve data to transform in 

information, to optimize decisions and actions to generate more sustainability and 

competitiveness during physical assets utilization adding values to the entire Operations- 

Maintenance chains. 

Meanwhile, the concepts of predictive and prognostic maintenance are considered the 

standard applications of networking par excellence. Machine Learning, self-learning 

algorithms, deep learning from artificial intelligence based on neural networks, machine to 

machine are the more utilized technologies 4.0. 

The fundamental characteristic of IIOT is improving operational effectiveness through sensors, 

instruments, interconnected and networked and industrial devices. 

The difference with internet of things (IoT) is that with IIoT, computations occur as edge 

computing at the network edge, where they are generated because the computational effort in 

the IIoT is higher than in the IoT. 

The overall concept of IIoT includes concepts like Edge computing, Additive manufacturing (3D 

printing) etc. that have separate sections in this booklet. For this It is considered to be relevant 

to address this concept in context of industrial maintenance. Therefore, we focus on cyber-

physical systems and evolution of IIoT emerging from Programmable Logic Controllers (PLC’s). 



For maintenance function IIoT has meant a vast increase of offering from connectivity services 

to data visualization, analytics, smart sensors, and on and on. 

Cyber-Physical Systems (CPS): the basic technology platform for IoT and IIoT and therefore the 

main enabler to connect physical machines that were previously disconnected. CPS integrates 

the dynamics of the physical process with those of software and communication, providing 

abstractions and modelling, design, and analysis techniques 

(https://en.wikipedia.org/wiki/Cyber-physicalsystem) 

An object of the Industrial Internet finds applications within the "factory", of the corporate 

reality, in the context of the fourth industrial revolution and in the transition industrial 

scenario. 

5.2. Cloud Computing 

It is a form of advanced technological outsourcing in which the user does not buy the product, 

but the ability to use that product remotely via the Internet, without physically having it. 

This technology offers rapid innovation, flexible resources, and economies of scale through the 
delivery of computational computing services. 

Many of the services in Maintenance are moving from local on-site systems to centralized and 

cloud computing based services. This trend can be observed on several levels of organizations 

from CMMS systems to more Operations and business systems. 

Cloud computing generally is referred to a business model where software-based services are 

provided with a subscription basis e. g. with a monthly fee or reserving capacity based model 

over the internet. Acronyms associated to cloud computing are: 

1. IaaS = Infrastructure as a Service. 

2. PaaS = Platform as a Service. 

3. SaaS = Software as a Service. 

4. XaaS = Anything as a Service. 

These generally refer to generic or specific Services provided on a global scale by remote. 

As a technology cloud refers to public, private and hybrid cloud. Public clouds provide service 

over the public internet to several users e.g. organizations. Private clouds serve by default one 

organization and are privately organized, built and managed. 

Hybrid clouds can hold elements from both of the models e.g. certain parts of the software can 

use cloud based resources and certain data can be on locally managed databases. 

Multicloud is an approach where more than one cloud is used. 

A multi-cloud environment can be used to better control sensitive data or provide redundant 

storage for improved disaster recovery or accidental situations. 

As more and more services are moving to cloud integration of cloud services is becoming a 

standard. It is common to come across integration where common acronyms are API (note that 

API is only one of many types of integration methods). API is an acronym of Application 



Programming Interface. API is a definition that is used to exchange information between 

systems. 

5.3. Edge Computing 

Edge Computing is a key technology for the Industrial Internet of Things (IIOT). With stronger 

networking, the amount of transmitted sensor data increases and with it the demands on IIOT-

connected devices, machines and plants. Real-time processing of this data is gaining 

importance, although this poses further challenges especially with big data. 

With edge computing maintenance ensures that captured data does not block processes along 

the value chain. 

Edge is the term used to describe the edge of a technical information network where the virtual 

and real worlds meet. 

In a decentralized IT architecture, big data recovered areas not processed in the data center, 

but directly at this transition and moved to the cloud if necessary. 

Edge computing enables data pre -processing in real time at this point: Collected data is 
condensed locally according to defined criteria. Initial analysis results can now be fed back 

directly to the end devices or processed further. 

Subsequently, it is possible to transfer only relevant and thus smaller data packages to the 

cloud, which cannot be used on their own. By reducing the amount of data, stationary servers 

are relieved, but also the running costs for data transfer and the cloud are reduced. This 

decentralized processing not only conserves resources, but also reduces the risk of data loss 

off-site or in the event of cyber-attacks on the cloud. 

Edge computing can reduce latency, optimize data flows, and improve production flows and 

processes. 

Edge computing is a method of distributed processing of data at its origin e. g directly from the 

sensor chip. Close to the term is fog processing that processes data e. g. on gateway level having 

data transmitted from the sensor to a processing unit. 

Edge computing is commonly used in applications where e. g. row sensor data needs to be 

processed and controlled to this processing pipeline, has relevance processing data close to 

where it is generated brings considerable benefits in terms of processing latency, reduced data 

traffic and greater resilience in the event of a data connection failure. 

In maintenance these applications can include processing e. g. advanced signal processing in 

high frequency vibration or electric signals data. 

Many IoT applications leverage cloud-based resources for computing power, data storage, and 

intelligent applications that provide business insights. 

However, it is often not optimal to send all data generated by sensors and devices directly to 

the cloud, as there are generally bandwidth, latency, and regulatory issues to consider. 

The 3 main reasons why edge computing is required in IoT applications are as follows: 



1. Bandwidth 

The amount of data that some IoT applications generate can be staggering, similar to 

the costs associated with sending all data to the cloud. This makes local processing 

more practical and beneficial. This is also a gating factor for any application that 

requires streaming large amounts of content, including high- definition video, which 

can be used in oil and gas exploration applications. 

2. Latency 

Some applications require extremely low latency. This is the time it takes for a data 

packet to be transmitted to the destination and back. Any application that involves 

security, such as driverless cars, healthcare applications, or industrial factory floor 

applications, requires near instantaneous response times. Cloud services are not 

optimal in such cases because of the delay involved in transferring to a centralized 

service. 

3. Regulatory Requirements 

In highly regulated industries and regions (such as in Europe with the General Data 

Protection Regulation DSGVO), the way personal data is processed is strictly controlled, 

including where it is stored and how it is transferred. This leads to an increased need 

for local data centers. 

In all these cases and more, edge deployments are essential to solving these problems. 

5.4. Fog Computing 

Fog computing is a network architecture that extends from the "edges," or points where data 

is generated, to where information is stored. Which is usually a cloud or data center. This 

distributed network is therefore the link between the transport of data into the cloud and its 

creation and analysis at the edge. 

This means that the network layer Fog Computing, for example, takes care that the data of an 

autonomous car finds its way to the data center. But there is more going on. 

That's because Fog computing can give an organization greater control over where such data 

should most meaningfully be computed at any given moment. Fog computing frameworks can 

determine whether the network is fast enough for data transfer, whether a low-latency 

connection should be created, or whether edge computing should be used instead. 

That is, computing on the endpoint, rather than in the data center. Fog and edge computing go 

hand in hand here to a certain extent, whereby the latter can be described somewhat 

inaccurately as "many distributed mini-clouds". 

Fog computing is commonly used when data collected is cast and needs to be processed e.g. 

filtered to include only relevant parts from the desired data processing purposes. Common 

example would be processing industrial process data from an industrial logic controller. 



Methods like fog and edge computing enable data efficiency for cloud computing as well as 

access to applications where latency, network limitations and potential redundancy for 

connection interruptions are challenges. Some industries, industrial manufacturers or local 

regulators also have policies that the original data needs to be able to access, replicated and/or 

primarily stored in certain ways. In this type of use cases technologies like edge and for 

computing can be applied as follows. 

Fog computing and edge computing are both technological approaches to cloud computing, but 

they can be clearly distinguished from each other. 

Cloud computing and fog computing differ in the location where services are offered and data 

processed. 

Fog computing processes data close to its origin at the edge of the network in decentralized 

"minicomputing centers" and provides for lower latency and reduction of the volume of data 

to be transmitted in the network by intermediate processing close to the data source. 

Fog computing adds another layer, the Fog layer, to the basic architecture of cloud computing. 

The architecture thus consists of the following three layers: 

1. Edge layer 

2. Fog layer 

3. Cloud layer 

The edge level consists of the end devices that collect and provide the data to be processed. 

They communicate with the next higher level, the Fog level. 

 In the case of edge computing, the end devices are able to process certain data themselves. 

The Fog layer has its own computing power and intelligence. The data transmitted to a Fog 

node of the Fog layer is pre-processed there. If required, the raw data from the end devices or 

the pre-processed data from the Fog layer can be transferred to the cloud layer for further 

processing. 

When machines have to react in the microsecond range, there is not enough time to transmit 

the data to a Data Center in the cloud, analyse it there and send the result back. 

It helps if information - for example from position sensors - can be evaluated locally and the 

resulting reactions triggered directly on site. 

5.4.1. Fog Computing Advantages 

The Internet of Things networks a wide variety of devices and machines that continuously send 

and receive data. The volumes of data to be transmitted are increasing, and at the same time 

there are enormous demands on the processing speed of the data due to the real-time 

processes in the IoT. 

If the processing of the data only takes place in central data centers within the cloud, 

sometimes large distances have to be overcome. 



Since the transmission and computing capacities of the cloud are limited, an increase in end 

devices and data leads to increasing processing times. The requirements of the real-time 

applications of the Internet of Things can hardly be met by classic cloud computing. 

Fog computing brings computing capacities to the edge of the cloud, shortens the distances to 

be covered and provides resources that can be used decentralized. 

The concept scales well and keeps pace with an increasing number of networked end devices. 

Since not all data is transmitted, particularly sensitive information can remain within the 

company's own infrastructure. Edge or Fog Computing is therefore an alternative, especially 

for companies that are reluctant to transfer their data to the cloud because they fear that it 

could be spied on there. 

Fog computing provides solutions for numerous applications in the field of the Internet of 

Things (IoT). 

For Maintenance 4.0, Fog Computing is a key technology. 

Fog computing is becoming an indispensable building block of a smart factory, where real-time 

capable processes and applications are in demand. The data supplied by the sensors of the 

production plants can be processed far and Fog Nodes deliver the required control and 

regulation information back to the machines within a very short time. 

Companies should consider Fog Computing when: 

1. Data is collected at the extreme edge: vehicles, ships, factory floors, roadways, railways, 

etc. 

2. Thousands or millions of things across a large geographic area are generating data. 

3. It is necessary to analyse and act on the data in less than a second. 

Compared to classic cloud computing, Fog computing has numerous advantages. 

1. Reduction of transmission and latency times. 

2. Faster processing of data. 

3. Acceleration of analysis and decision-making processes. 

4. Real-time capability of applications. 

5. Maintenance of IoT functions even without a connection to central cloud services. 

6. Improved availability of IoT applications. 

7. Independence from central computing and transmission capacities. 8.Protection of 

sensitive data through decentralized processing. 

However, the advantages of Fog Computing are also countered by some limitations: 

1. Higher intelligence at the edge of the network requires additional resources and more 

complex components. 

2. Hardware costs for decentralized components increase. 

3. Increased maintenance requirements due to a larger number of decentralized 

intelligent nodes. 

4. Protective measures must be additionally decentralized. 



5.5. Edge Versus Cloud Computing 

Edge infrastructure can be managed or hosted by communications service providers or other 

types of service providers. Different use cases require deploying various applications to 

different sites. In such scenarios, a distributed cloud that can be seen as an execution 

environment for applications across multiple sites, including managed connectivity as a single 

solution, is useful. 

Key benefits of edge solutions include low latency, high bandwidth, device processing and data 

offloading, as well as reliable processing and storage. 

Cloud Computing is a form of decentralization at the Cloud level for the local processing of data 

that must manage actions that in turn must take place locally. This solution requires that the 

data is not sent completely to the cloud but takes advantage of the ability to process locally and 

communicate with some IoT devices capable of doing so. The classic logic of Cloud computing 

provides that in the communication between two devices, there is always a sending of data to 

the cloud itself. Fog or Edge Computing, allows you to keep a certain amount of data for local 
processing. 

These technologies, to work in an integrated way and therefore use shared information, must 

be connected to a common computer network, which is usually the Internet. 

5.6. Data Science 

Data Science was recognized as a discipline in its own right (therefore no longer a branch of 

computer science and statistics) only in 2001, when William Cleveland outlined its fields of 

expertise, listing different areas of research. 

With the advent of big data and the idea of "data value" typical of this paradigm, the very 

concept of Data Science has evolved, which thus becomes a holistic science, whose founding 

principle is not the mere data management, but a wider enhancement of the large 

heterogeneous amount of data coming from different sources (data warehouse sensors, web, 

etc...). 

Data science is as a transversal discipline, which includes both the spheres of computer science, 

statistics and mathematics, as in the original meaning, and a set of more managerial skills, 

linked to the most recent need to know how to read, interpret and capitalize big data 

sustainability and competitiveness. The objective of data science is to understand big data and 

analyse it, but also to enhance it and ensure that, when properly interrogated and correlated, 

it generates useful information not only for understanding phenomena, but also for pointing 

the right direction to generate appropriate application and improvements in each area. Data 

Science combines multiple fields, including statistics, scientific methods and data analysis, to 

extract value from Big Data. 

Data science is the set of methodological principles, based on the scientific method and 

multidisciplinary techniques aimed at interpreting and extracting knowledge from data 

through the related analysis. 

The methods of data science (often associated with the concept of data mining) are based on 

techniques from various disciplines, mainly from mathematics, statistics, information science, 



computer, engineering and social sciences, especially in the following subdomains: databases 

and data visualization of artificial intelligence or machine learning through Big Data. 

5.7. Data Scientist 

Those involved in Data Science are so-called Data Scientist, who combine a wide range of skills 

to analyse data collected from the web, smart phones, customers, sensors and other sources. 

They are experts who apply statistical-mathematical techniques, knowledge and specific 

software to manage, analyse and use big data to obtain the information that guides the best 

strategic or critical operational and organizational choices, in the specific realty of existing 

physical assets and company framework. The Big Data Analytics & BI Observatory of the Milan 

Polytechnic in 2018 described the Data Scientist as a highly specialized figure who knows 

mathematical- The difference with the Internet of Things 

statistical techniques in depth, knows how to develop and implement Machine Learning 

algorithms, knows more than one language of programming (especially R or Python) and 

manages Analytics; can extract data from MySQL databases, use pivot tables in Excel and 
produce clear and concise views for business users. Since Maintenance is a Data Driven 

function, the use of 4.0 technologies requires moving from big data through algorithms to 

information using the most appropriate statistical methodologies. However, taking into 

account the specificity of the statistical algorithms and the high repetitiveness of the 

degradation models of the mechanical and electrical components, the Big Data Engineers of 

Design and Maintenance, after training, can directly use the specific software available on the 

market to develop the algorithms as Python (see paragraph 20, and reference point 3 and 4). 

5.8. Big Data 

(Adapted from original sources 19 and 22) 

The English term big data generically indicates a collection of information so extensive in terms 

of volume, speed and variety that specific analytical technologies and methods for the 

extraction of value or knowledge. The term is therefore used referring to the ability of Data 

Science to analyse or extrapolate and relate an enormous amount of heterogeneous, structured 

and unstructured data, using statistical and computer processing methods, in order to discover 

the links between different phenomena correlations and predict future ones and are 

considered the Base to develop many kinds of Preventive Maintenance. 

There is no pre-established reference threshold in terms of size beyond which it legitimates to 

speak. In general, we speak of big data when the data set so large and complex that it requires 

tools and methodologies to extrapolate, manage and process data to achieve suitable 

information within a reasonable time. In fact, as demonstrated by Moore's law, technological 

evolution allows storage and management of datasets of continuously increasing size. 

Douglas Laney (2001) had defined the three-dimensional the 6V data model: 

1. VOLUME: amount of data generated every second from heterogeneous sources. 

 

2. VARIETY: they can be of various types so for accurate analysis more accurate analyses 

are divided into: 



a. unstructured data 

b. semi-structured data 

c. structured data to finalize them according to specific needs 

 

3. VELOCITY with which data is generated to define the capacity to collect and processit. 

In last years, with the increase in complexity and the large use of Big Data the following 

other features have been added: 

4. VERACITY: considering the variety of data and the velocity at which it is produced, it is 

necessary to ensure the quality of the data entering the analysis and processing 

systems in order to achieve a high level of reliability of the released information. 
 

5. VARIABILITY: it must be contained and reduced in order to obtain significant data and 

consequent information and to appropriately size the processing capacity. 

 

6. VALUE: the choice of big data that will be collected and processed must be carefully 

predefined as expected information in order to create an effective added value to justify 

the effort and the resources involved. 

5.9. Big Data Engineer 

It carries out the technical and organizational task of identifying sources and hardware tools 

for the collection and storage of big data of production and maintenance processes and 

software or analysis, structuring, selection and subsequent processing into information to 

implement the most sustainable and competitive strategies. 

Since these activities are part of the tasks entrusted to the maintenance engineering the Big 

Data Engineer task is part of the Maintenance Engineering Discipline. 

5.10. Big Data Analytics 

(Adapted from original source reference 29). 

Tools and methods for the management of Big Data from Internet of Things equipment, directly 

connected to the manufacturing and industrial environment or related to the integration of 

data between IT systems, for planning and synchronization of Production Maintenance and 

Logistics flows. Industrial Analytics includes Business Intelligence, Data Analytics, Data 

Visualization, Simulation, Forecasting or the tools needed to support quick decisions from IoT 

data. It is the systematic computational analysis of data or statistics. It is used for the discovery, 

interpretation, and communication of meaningful patterns 

in data. It also entails applying data patterns towards effective decision making. It can be 

valuable in rich areas with recorded information; analytics relies on the simultaneous 

application of statistics, computer programming and operation research to quantify 

performance. 

Organization and data analysis can produce important information to make decisions as well 

as to define products and services with an ever increasing level of specificity. 



Is the field of mathematics that´s performed descriptive, predictive and prescriptive analysis 

based on collecting data. The descriptive analysis aims to describe the pattern of data 

(Histogram, probability Density Function, mean, median, quartiles, mode, Min, Max and other 

statistic parameters) 

The prescriptive analysis aims to predict the result of a dependent variable based on one or 

more dependent variables (Regression Analysis, Correlation Analysis, Supervised Machine 

Learning prediction model). 

The Prescriptive aims to define the best action based on the collected data (Reinforcement 

Learning). 

Data Analytics is a multidisciplinary methodology influenced from some trends: 

1. There is a tendency to use the term analytics in business settings text analytics vs. the 

more generic text mining to emphasize this broader perspective. 

 

2. There is an increasing use of the term advanced analytics, typically used to describe the 

technical aspects of analytics, especially in the emerging fields such as the use of 

machine learning techniques like neural networks, decision tree, logistic regression, 

linear to multiple regression analysis, classification to do predictive modelling. 

 

3. It also includes Unsupervised Machine learning techniques like cluster analysis, 

Principal Component Analysis, segmentation profile analysis and association analysis. 

 

4. There is extensive use of computer skills, mathematics, statistics, the use of descriptive 

techniques and predictive models to gain valuable knowledge from data through 

analytics. 

 

5. The insights from data are used to recommend action or to guide decision making 

rooted in the business context. Thus, analytics is not so much concerned with individual 

analyses or analysis steps, but with the entire methodology. 

 

6. In the field of Business Analytics, new analysis and processing models have been 

created and Big Data Analytics considering their main characteristics: 

 

6.1. to perform descriptive and prescriptive analysis. 

 

6.2. to provide information representative of the existing situation, evolutionary 

forecasts and prognostic projections in relation to the tools and calculation 

model used for the analysis of the physical state of assets for policy purpose and 

maintenance strategies. 

5.11. Big Data Analysis 

It focused on understanding the past; what happened and why it happened and what will 

happen in the future. There are four types of Big Data Analysis. 

 



 

5.12. Descriptive Analysis 

The set of technical information describing the state of an asset past and actual. The Descriptive 

analysis is an important first step for conducting statistical analyses. It gives you an idea of the 

distribution of your data, helps you detect outliers and typos, and enable you identify 

associations among variables, thus making you ready to conduct further statistical analyses. 

There are two types: 

1. Descriptive analysis for each single variable 

2. Descriptive analysis for combinations of variables  

5.13. Predictive Analysis 

It is the branch of the advanced analytics which is used to make predictions about unknown 

future events. Predictive analytics uses many techniques from data mining, statistics, 

modelling, machine learning, and artificial intelligence to analyse current data to make 

predictions about future. Measurement tools and IT technologies that perform the analysis of 

characteristic data of the physical state of an asset to provide information able to predict the 

evolutionary lines and therefore what could happen in the residual life of the physical assets 

and related components that is named Predictive Maintenance. 

5.14. Prescriptive Analysis 

To better understand prescriptive analysis methodologies, it is important to have in mind what 

an optimization problem is and what it is composed of. 

First of all, an optimization problem is the problem that focuses on finding the best solution 
among all the feasible solutions. Advanced tools that, together with the analysis of data related 

to the state of a physical asset, specify as Prescription both the actions necessary to achieve the 

aforementioned results, and the related effects of each in relation to the objectives to be 

achieved. This approach can help in optimizing decision making, planning, work efficiency and 

physical assets optimization. 

5.15. Prognostic Analysis 

Prognostics is the prediction of failures based on certain multi measures of the characteristics 

of the physical state of the components of a physical asset in correlation with the operating 

parameters, that are continuously updated during its normal operation with statistically 

significant cumulative data. The aim is to provide an accurate assessment of the forecast 

residual useful life. 

5.16. Artificial Intelligence (AI) 

(Adapted from original sources 1and 2) 



5.17. What Is Artificial Intelligence 

Artificial intelligence or AI, from the initials of the two words, is a discipline belonging to 

computer science that studies the theoretical foundations, methodologies and techniques that 

allow the design of hardware systems and software program systems capable of providing the 

electronic computer with performance that, to a common observer, would seem to be the 

exclusive responsibility of human intelligence (see Figure 5.1). 

 

 

Figure 5.1. What is Artificial Intelligence (Adapted as found in the literature). 

 

Specific definitions can be given by focusing, either on the internal processes of reasoning or. 

on the external behaviour of the intelligent system and using as a measure of effectiveness or 

the similarity, with human behaviour or with an ideal behaviour, called rational: 

1. ACT HUMANLY: the result of the operation carried out by the intelligent system is 

indistinguishable from that carried out by a human. 
 

2. THINKING HUMANLY: the process that leads the intelligent system to solve a problem 

is similar to the human one. This approach is associated with cognitive science. 

 

3. THINKING RATIONALLY: the process that leads the intelligent system to solve a 

problem is a formal procedure that goes back to logic. 



5.18. European Code of Ethics of AI Applications 

The starting point of the entire document, and of all the legal principles that have emerged 

from it, is that Artificial Intelligence must have man at the center and must be at the service of 

the common good to improve well-being and guarantee freedom. First of all, the group of 

experts identified the legal foundations on which the code should rest by searching for them in 

the EU Treaties, the Charter of Rights and the International Human Rights law. 

From this analysis, those mandatory rights were identified that, in the European Union, must 

be respected for Artificial Intelligence, namely: 

1. Respect for the dignity of man. 

2. Freedom of the individual. 

3. Respect for democracy and justice. 

4. Equality and non-discrimination Citizens rights. 

5.19. Artificial Intelligence Applied to The Maintenance 4.0 

The Artificial Intelligence (AI) aims to enable the machine to think and take their own decision 

based on data collected and assessed automatically without any human intervention. The AI 

has been applied to different fields such as biology studies and research, financial and 

engineering with successful cases of use of numerical and categorical data, text and images. 
The vast field of science application of AI for recognition pattern of information collected to 

take decision has several applications such as natural language processing, virtual personal 

assistant, visualization, audio analytics, image analytics, internet of things, Robotic & Soft 

Robotic, Machine translation, Social network analysis, Simulation and modelling, Machine 

learning and deep earning as shows the Figure 5.1. 

Artificial intelligence is the field of science that allows a robot and computer: 

1. to imitate the man modelling mental and computational processes to creating 

algorithms. 

2. to carry out computational process through physics, mathematics, computer sciences, 

engineering disciplines, psychology and linguistics. 

With the aim to achieve results that are comparable or better than those obtainable by man 

with his natural intelligence. 

The objective of this chapter is to demonstrate the A.I applied for maintenance 4.0 concerning 

the Prognostic Health Management (PHM) and Machine Learning Methods. 

The aims to predict equipment failures and degradation for preventive intervention, define 

levels of alert to alarm maintenance technicians when any equipment achieves different levels 

of degradation and propose a maintenance schedule concerning the real time equipment 

degradation, to enable maintenance expert focus on the most critical equipment with lowest 

Remaining Useful Life (RUL) and highest Degradation (DPS). 

In addition, the visual recognition based of pattern of failure is the objective of Deep Learning 

and the definition of the best sequence of action is the main objective of the Reinforcement 

Machine Learning. 



5.20. Prognostic Health Management 

(Adapted from original source 2) 

5.20.1. Introduction 

The main objective of preventive maintenance is to predict the failure occurrence or 

equipment degradation in order to anticipate such unwanted event that may cause system 

shutdown, higher operational cost or even accident. Based on the last decades, new technology 

and the new concept of Maintenance 4.0 has arisen. 

The evolution of a preventive maintenance starts with the concept of schedule maintenance 

based on time, condition-based maintenance, that means, the preventive maintenance based 

on the condition of the physical asset and the last evolution is the so-called Prognostic Health 

Management. 

The first step of the PHM application starts with a sensor or set of sensors producing data of 

the equipment or component being monitored, that data being Condition-Based Data (CBD) 

reflecting the actual deployment and usage of what is being observed. 

The second stage being an application-specific data pre-processing tool extracting information 

out of the sensor data and translating that into Feature Data (FD) that has a relationship to 

aging and degradation. 

The third stage is then consumed by the PHM Algorithm resulting in prognostic information 

such as Remaining Useful Life (RUL), State of Health (SOH), and Prognostic Horizon (PH) as 

shows Figure 5.2. 

 

 



 

Figure 5.2. Prognostic Health Management Maintenance (PHM) (Original source reference 1-

2). 

 

5.20.2. Data Preparation 

The data that comes from sensor is so-called the Condition-Based Data (CBD) and such data 

comprises noise, that need to be extracted to have the feature data. The extraction of noise 

from CBD is a software task and sometimes performed by the sensors themselves, especially 

by ‘smart’ sensors having data-processing capabilities and related firmware. The Feature data 

is described as: 

 

𝐹𝐷 = 𝐶𝐵𝐷 − 𝑁                                                                                                                                                 (1) 

Where: 

FD = Feature Data 

CBD = Conditioned Based data 

N = Noise 

The next step is to adjust the FD to a smoother shape curves such as Fault Feature progression 

(FFD) or Degradation Progression Signature (DPS). The FFP is represent as: 

 

𝐹𝐹𝑃𝑖 =
𝐹𝐷𝑖 − 𝐹𝐷0

𝐹𝐷0
                                                                                                                                          (2) 



Where: 

𝐹𝐷𝑖 = Feature Data in time i 

𝐹𝐷0 = Feature Data in time zero 

 

The Degradation Progression Signature (DPS) is the partial derivate of the Feature data 

function in each time t that is represented by: 

 

𝐷𝑃𝑆𝑖 =

𝑑𝑔(𝐹𝐷𝑖)
𝑑𝐹0

= 𝐹𝐷𝑖

𝐹𝐷0
                                                                                                                                 (3) 

 

The next step is to define the initial Model that will be applied to predict the RUL and SoH. The 

Kalman Model principle defines three regions of the failure signature with three regions of 

values in the graph considering the degradation parameter (Axis Y: a1, a2, a3) and time         
(Axis X: t1, t2, t3) as shows the Figure 5.3. Such regions are selected based on the previous 

pattern of degradation level and time that can also be defined based on maintenance expert 

experience. The degradation parameter can be vibration, temperature, humidity. Pressure, 

rotation, or a combination of different physical parameters. 

 

 

Figure 5.3. Data Space (original source References 1-2). 

 

The next step is to get the sensor data input and chose a model that best fit better on such data. 

There are different mathematic models such as linear, exponential, power and others that can 



be used to adjust the FFP or DPS functions as shows the Figure 5.4. The Artificial Intelligence 

concept is applied for PHM methods whenever the new input data from sensor fulfil the 

algorithm, then the algorithm chose the best function that fits on the data and perform the RUL 

and SOH prediction automatically without any human intervention. The Artificial Intelligence 

algorithm will choose the best function that fit on the data based on accuracy calculation as will 

be described in the next item. 

 

 

Figure 5.4. FFP and DPS examples (original source reference 1-2). 

 

5.20.3. Remaining Residual Useful Life (RUL) And State of Health (SoH) 

Estimation 

(Adapted from original source reference 2) 

After the best function selection, the next step is to predict the RUL and SOH. The RUL is the 

difference between End of Life (EOL) and the current time (TS) when the data was sampled. 

The EOL is estimated future time when functional failure is expected to occur. The EOL is 

usually predicted by reliability engineering studies by using historical data and applying 

statistical analysis named Lifetime Data Analysis. However, when the equipment/component 

is operating under high level of stress the EOL will occur shorter on time. That is the main 

objective of the RUL estimation. The RUL is described as following: 

 



𝑅𝑈𝐿𝑖 = 𝐸𝑂𝐿𝑖 − 𝑇𝑆𝐿𝑖                                                                                                                                       (4) 

 

To produce RUL estimates, a PHM system that uses Condition-Based Data (CBD) is needed to 

produce degradation signatures that are processed to produce accurate estimates of RUL and 

SoH for each sampled data as shows the Figure 5.2. 

The Figure 5.2 shows an example of linear FFP function that is estimated based on CBD from 

sensor that measure stress factors parameters such as vibration, temperature, humidity or 

another parameter. As long as the time past and new CBD comes out from sensors, the RUL is 

updated. 

The Figure 5.5 shows the green line that is represent the usual operation condition where the 
stress parameter (temperature, vibration, humidity, or another parameter) are under design 

specification. Above the green line, the stress factor is over the design specification and will 

reduce the equipment/ component life. The red line is the level of stress that will trigger the 

equipment/component functional failure. The main objective of the RUL prediction is to alert 

the maintenance experts about the RUL for the equipment/component achieve the functional 

failure. That enable them to perform a preventive maintenance action. Despite a great 

technological solution, whenever multiple equipment has a low RUL its important to 

maintenance expert to prioritize and plan the most critical equipment to perform a preventive 

intervention and reduce the System downtime. Such problem will be solved by the 

Unsupervised Machine Learning models based on cluster data as will be described in the point 

6.5.3. 

 

 

Figure 5.5. Example to produce RUL estimates. 



 

The State of Health (SOH) information is values ranging from 100 % (full health) to 0 % (no 

health) and is calculated for every data sample as shown in the equation below 

The SoH graphic is described in Figure 5.6. 

 

 

Figure 5.6. State of health prediction (original source reference 2). 

 

The End of Life (EOL) is defined by the equation: 

 

𝐸𝑂𝐿𝑡 = 𝑃𝐷𝑡 − 𝐵𝐷𝑡 ∗ 𝐸𝑂𝐿𝑡 = 𝐸𝑛𝑑 𝑜𝑓 𝑙𝑖𝑓𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡                                                                            (5) 

Where: 

𝑃𝐷𝑡 = Prognostic Distance at time t 

𝐵𝐷𝑡 = Begining of Degradation at time t 

Another important metric that needs to be assessed in PHM is the accuracy of the estimation 

of RUL. The first metric to be defined is the Differential Non-linearity (DNL). The DNL is a 

measure of the non-linearity between two adjacent similar values and it is an important 

specification of the accuracy of data. As applied to RUL and SOH estimates, the DNL at any given 

time is the difference between the estimated RUL or SOH and the ideal RUL or SOH. Considering 

the RUL the DNL is described by the equation as. 



 

𝐷𝑁𝐿(𝑡) = 𝑅𝑈𝐿𝑖𝑑𝑒𝑎𝑙(𝑡) − 𝑅𝑈𝐿𝑒𝑠𝑡(𝑡)                                                                                                           (6) 

Where: 

𝑅𝑈𝐿𝑖𝑑𝑒𝑎𝑙(𝑡) = Initial RUL at time t 

𝑅𝑈𝐿𝑒𝑠𝑡(𝑡) = Estimated RUL at time t 

 

The Accuracy is a measure of how close RUL estimates are to ideal values of RUL that is defined 

by the table as following: 

 

Table 5.1. FFP and DSP data from sensor. 

Time RMS FFP DSP 

Days (mm/s) Ratio dP/P0 

0,7 
20 

58 

72 

106 

126 
xxx 
xxx 

3,11 
3,15 

3,16 

3,21 

3,18 

3,22 
xxx 
xxx 

0 
0,013 

0,016 

0,031 

0,022 

0,034 
xxx 
xxx 

0,00 
0,03 

0,03 

0,06 

0,04 

0,07 
xxx 
xxx 

 

The next step is automatic prediction of the RUL, SoH of the pump shaft vibration an automatic 

updated when new CBD comes from the sensor. The Figure 5.7a shows at first stage, the initial 

Kalman degradation function based on past historical data. The Figure 5.7b shows the 

automatic prediction of RUL, SOH and EOL after 500 days. In this time, the RUL is 353 hours, 

he EOL is 12020 minutes and the SOH is 44.27%. The figure 9C shows the degradation level at 

700 days. At this time the RUL is 259 hours, he EOL is 17103 minutes and the SOH is 30.64%. 

Despite of small reduction on degradation at 700 days the pump´s bearing is close to the 

functional failure. 

 



 
(a) 

 

 
(b) 

 



 
(c) 

Figure 5.7. RUL, SoH, EOL, Real Prediction (Reference 3). 

 

5.21. Machine Learning (ML) 

(Adapted from original sources 2 and 4) 

The Machine Learning (ML) is an artificial intelligence subject that uses data about individuals’ 

populations, disease, animals and plant samples for research as well as system´s 

equipment/component and even finance data to perform cluster, classification and prediction 

based on mathematic models, mostly supported by computer algorithms. 

Machine Learning (ML) began to flourish in the 1995 when it changed its focus from achieving 

artificial intelligence to addressing solvable problems of a practical nature, towards methods 

and models borrowed from statistics and probability theory as it is the case of Maintenance. 

Machine learning is the more utilized technologies on maintenance to transform Big Data in 

suitable Intelligent Information but can also be applied by using collecting data from predictive 
maintenance or different source of data an apply different algorithm solution to perform 

prediction, classification and cluster maintenance data. 

Therefore, concerning the maintenance engineering, the machine learning application is 

applied for the equipment criticality classification, failure regression predictions and the most 



advanced maintenance strategy, so called Prognostic Health Management, that aims to define 

equipment Remaining Useful Life (RUL) and State of Health (SoH) based on online monitoring 

data or non-destructive test by measuring the stressor factors such as vibration, voltage, 

temperature, humidity and other physical parameter that lead equipment degrade to 

functional failure. The concepts behind machine learning is about to use the set of knowing the 

data to cluster, classify or predict future variables response. In order to classify and predict the 

data response, the machine learning model divides the dataset in the training data (~70% of 

dataset) and test data (~30% of dataset). The further step is to apply an algorithm to training 

data for the learning process and then to come out with a model. The model will be applied to 

the test data and the verification of the result take place. If the result is satisfactory, the new 
data set can use the same model defined based on the previous dataset to make predictions 

and if the result is satisfactory the model is validated. 

The machine learning can basically be divided into unsupervised machine learning, supervised 

machine learning, deep learning and reinforcement learning models based on the following 

definitions. 

1. Unsupervised Machine Learning: Aims to define a pattern in the set of data without 

previous knowledge of data features. 

 

2. Supervised Machine Learning: Aims to classify and predict response based on the 

known features of the dataset. 

The most common Unsupervised Machine Learning models used for clustering are: 

1. Principal Component Analysis; 

2. Multidimensional Scaling; 

3. K-Mean Clustering; 

4. Gausian Mixture; 

5. Hierarchical Clustering; 

6. Neural Network Self-Organized Map 

The Supervised Machine Learning is divided in classification and regression models. The 

Supervised Machine Learning Classification aims to define new data classification (label) based 

on pre-defined classification knowledge of a previous dataset. The most common example of 

Supervised Machine Learning Classification methods is the following: 

1. K-Nearest Neighbor (KNN); 

2. Decision Tree Classification; 

3. Naïve Bayes; 

4. Linear Discriminant Analysis; 

5. Supported Vector Machine Classification; 

6. Neural Network Classification; 

7. Logistic Regression Classification. 

The Supervised Machine Learning Regression model aims to predict the response variable 

based on predictors considering the pre-defined known dataset. The most common types of 

Regression Supervised Machine Learning Models are the following: 

1. Linear Regression, 



2. Ridge & Lasso Regression; 

3. Stepwise Linear Regression; 

4. Logistic Regression; 

5. Decision Tree Regression; 

6. Supported Vector Machine Regression; 

7. Neural Network Regression. 

The Deep Learning methods is a more sophisticated neural network with several hidden layers. 

The principles of Deep Neural network are the same on the Neural network presented before, 

but with the complexity to have several hidden networks that will give the final outputs based 

on the activation functions and weights distributed across the network. 

The Deep Learning is applied for image classification that can be very useful for the 

maintenance application to identify equipment degradation based on image from ultrasound 

test, radiograph test an infrared test. 

The Reinforce Learning is a machine learning method that aims to define the proper sequence 

of actions based on benefit created by each action. The RL benefit is set up for a pre-defined 

policy and considering all possible action and constrains under the current and future 

conditions, where the actions take place. When we apply the reinforce learning to the 

maintenance context the intention is to define the best sequence of maintenance task 

considering a group of equipment and their criticality based on classification, RUL, DPS. The 

maintenance team or maintenance technician is the so-called agent, and the agent will be 

trained to take the best sequence of maintenance task based on the reward of each action along 

the simulation. After a period of time, the agent learns the sequence of maintenance tasks that 

brings the highest reward. The best sequence of maintenance task is defined based on the 

policy, that is nothing more than subject. 

5.21.1. Supervised Machine Learning Regression the Gaussian Model 

(Adapted from original source 2, 4.) 

5.21.1.1. Introduction 

The Supervised Machine Learning Regression (SMLR) has the main objective to predict and 

forecast future values of dependent variable data based on the independent variables that are 

equipment/component features of pre-observed dataset. Therefore, it´s applied to predict 

process variable's value, Remaining Useful Life (RUL), State of Heath (SoH) and other 

parameters used in the maintenance field. The main advantage of such approach is to predict 

the parameter values automatically based on current historical data. Therefore, the SMLR 

models enable to save the huge amount of time dedicated to such activities as well as to link 

sensor data to PHM models to predict equipment and component RUL and SoH. The most 

common SMLR models are the following: 

1. Linear Regression; 

2. Ridge & Lasso Regression; 

3. Stepwise Linear Regression; 

4. Gaussian Regression; 

5. Decision Tree Regression; 

6. Support Vector Machine Regression, 



7. Neural Network Regression (NNR). 

In order to predict the data response, the machine learning model divides the dataset in the 

training data (~70% of dataset) and test data (~30% of dataset). The further step is to apply 

an algorithm to training data for the learning process and then to come out with a model. The 

model will be applied to the test data and the verification of the result take place. If the result 

is satisfactory, the new data set can use the same model defined based on the previous dataset 

to make predictions and if the result is satisfactory the model is validated. The general steps of 

SMLR process are described in Figure 5.8. 

 

 

Figure 5.8. General supervised machine learning regression steps. 

 

5.21.1.2. The Gaussian Regression Method 

A Gaussian Process regression aims to predict the response value based on the assumption of 

the dataset belongs to a Gaussian distribution. Therefore, the main assumption of this model is 

that all data are normal distributed. Concerning the 2D dataset that, 𝑥 ∈ 𝑅𝑛, ∑ ∈ 𝑅𝑛𝑥𝑛. 

The Gaussian distribution is defined by the vector with mean and covariance as shown the 

equation below. 

 

𝑓(𝑥\, ) =
1

√2| |1/2
𝑒𝑥𝑝 [−

1

2
(𝑥 −)/ −1(𝑥 −)]                                                                                     (7) 

 

Where: 

𝑥 = Reference vector 



Escriba aquí la ecuación. = Mean = Covariance vector 

 

Let´s consider now that we need to predict a response variable y given an x predictor value. In 

this case the equation below will be applied such as: 

 

𝑃(𝑦\𝑥, ) =
1

√2| |1/2
𝑒𝑥𝑝 [−

1

2
(𝑦 − ∗)/ ∗

−1
(𝑦 − ∗)]                                                                  (8) 

 

Where: 

∗ = Wx 

∗ = Mean = y covariance 
(𝑥, 𝑦) = 𝐾(𝑥, 𝑦) + 𝐼 𝑦

2  

𝐾(𝑥, 𝑦) = 2𝑒
−1
2𝐼2

(𝑥−𝑦)2
 

𝐾(𝑥, 𝑦) = 𝐾𝑒𝑟𝑛𝑒𝑙 𝑓𝑢𝑛𝑡𝑖𝑜𝑛 

𝐼 = Control de horizontal length scale 
2 = Control de vertical length scale 

The Gaussian Regression model is the optimization problem that aims to minimize of the 

horizontal and vertical length scales for infinite vectors defined by their means and covariance 

while predicting the response y that is defined by: 

 

𝑎𝑟𝑔𝑚𝑎𝑥𝐼, 2 = 𝑃(𝑦\𝑥, )                                                                                                                                  (9) 

 

The Figure 5.9 shows the principle of the Gaussian Process Regression model that is applied to 

predicting the response y given a data points x. Therefore, despite of a measured data point, 

there is a set of points that produce a Gaussian distribution. It can be understood such as a set 

of vibration, temperature, humidity, voltage, measured in the same day. Based on such 

measurements, it's possible to produce a Gaussian Distribution that represents such 

independent variable. Therefore, the Gaussian Process Regression will produce different of 

such Gaussian Distribution along time. 

 



 

Figure 5.9. Gaussian Regression (Reference 3). 

 

The Figure 5.9 shows an example of Gaussian Process (GP) regression model concept 

considering the parameter definition values such as vertical and horizontal length as well as 

the kernel function. The GP regression Model considers the mean, standard deviation and 

covariance to predict the regression function as described in the Figure 5.10 (A, B, C, D). 

Based on the Figure 5.10A to input the data into the GP model the first step is the data 
collection. Let´s consider as instance, that a measurement of vibration from similar pump´s 

shafts taking place in different time. Each colour represents the measurement of one specific 

pump´s shaft vibration. Each pump´s shaft will have one specific regression function based on 

the measurement taken in different period of time as shown the figure 5.10B. 

However, by considering the different pump´s shaft vibration for each measurement time, it´s 
possible to assume a normal distribution for pump´s shaft vibration, since all such equipment 

components are similar as shows the Figure 5.10C. 

Nevertheless, the final step is to add new pump´s shaft vibration measurement to smooth the 

regression model standard deviation. By adding new measurement, the shape presented in 

figure 10c will get a new shape such as presented in Figure 5.10D. 

 



 

Figure 5.10. Gaussian Process Regression steps (original sources reference 2). 

 

5.21.1.3. The Gaussian Method Applied for RUL Prediction: The Control Room 

Temperature Case Study 

Concerning the maintenance application, the equipment independent variable such as 

temperature, humidity, rotation, vibration and others variables measured by the sensor as well 

as degradation measurement such as corrosion, erosion and crack thickness measured by Non-

Destructive Test can be used as input for RUL, SOH and other parameter prediction. Therefore, 

to simplify the understanding about the Gaussian Process regression, let´s consider an example 

about the computers rooms where high temperature above 50 Celsius can trigger failure in 

such computer and shutdown the complete database. In order to predict the RUL when the 

temperature is over than 40 Celsius, sensor capture the temperature in different computers 

rooms. The Table 5.2 shows on the first and second column, a summary of data from five 

control rooms where the computer was affected by high temperature and the RUL were 

calculated based on historical data. The third and fourth columns shows the new. 

 

 

 

 

 

 



Table 5.2. Control Temperature Degradation. 

 

 

The first and second columns values are actually, the set of 99 data of temperature and RUL 

that are initially used to train the SMLR model that use 70% of such data. The Gaussian Method 

is chosen based on the comparison of the lowest error (RMSE:256.58) among the other 

regression methods such as Linear, Tree, SVM, Step Wise and Ridge & Lasso. The Figure 5.11 

shows the good fitness of the Gaussian Regression method. The Figure 5.12 shows the 

prediction of RUL equal to 18 hours (RUL=1064) for the computers functional failure occur at 

the new computer room. 

 

 
Figure 5.11. Gaussian Regression Training Verification (Reference 3). 



 

 
Figure 5.12. Gaussian Process Regression Validation (Original Sources Reference 2). 

 

5.21.2. Supervised Machine Learning Classification: The KNN Model 

(Original source reference 2) 

5.21.2.1. Introduction 

The Supervised Machine Learning Classification (SMLC) has the main objective to classify data 
based on the features pre-observed in a dataset. Therefore, it´s applied to classify new 

equipment criticality, risk, high performance, bad actors, and other classification applied in the 

maintenance field. The main advantage of such approach is to classify a huge number of data 

based on the SMLC models enable to save the huge amount of time dedicated to such activities 

as well as to define alarms alert based on equipment and component criticality classification. 

The most commons SMLC models are the following: 

 

1. K-Nearest Neigh bour (KNN); 

2. Decision Tree Classification; 

3. Naïve Bayes; 

4. Linear Discriminant Analysis; 

5. Support Vector Machine; 

6. Neural Network Classification; 

7. Logistic Regression Classification. 

 

The general steps of Supervised Machine Learning Classification are described in Figure 5.13. 

 



 

Figure 5.13. General Supervised Machine Learning Classification steps. 

 

Concerning the maintenance application, the equipment characteristic such as criticality, risk, 

high performance, bad actors, and other classifications enable the maintenance leaders 

prioritize the equipment. In addition, the SMLC also enable to define alert limit levels to be part 

of to the PHM program. 

5.21.2.2. The KNN Model 

The K-Nearest Neighbours (KNN) method is a type of Supervised Machine Learning 

Classification (SMLC) method, that can be applied to equipment data classification for the 

maintenance management decision support. The KNN aims to classify a new data considering 

a set of data already classified based on previous dataset. Therefore, the new data are 

compared to the K closest point base on the distance between data points. The new data will 

be classified based on the same class that the closest point belongs. 

In order to define the distance among the k Neighbours point, the distance can be calculated 

based on Euclidian distance, Manhattan Distance or Minlowski distance as the following 

equations: 

 

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑(𝑋𝑖 − 𝑌𝑖)
2

𝐾

𝑖=1

                                                                                                  (10) 

Or 

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑|𝑋𝑖 − 𝑌𝑖|

𝐾

𝑖=1

                                                                                                  (11) 

Or 



𝑀𝑖𝑛𝑙𝑜𝑤𝑠𝑘𝑖 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

[
 
 
 
√∑(𝑋𝑖 − 𝑌𝑖)

𝑞

𝐾

𝑖=1

     

]
 
 
 

1
𝑞

                                                                                      (12) 

 

Considering a positive integer number K = 1, 2, 3… N, that´s defined the number of nearest 

points used to classify a new data point. Therefore, the new data point x and a distance metric 

“d”, the K-NN model are performed based on the following: 

1. The distance “d” between the x and each observation of the training data set. 

2. The probability of each class that is the fraction of the point in I with that given class 

label. 

The probability is defined by the equation below. 

𝑃(𝑦 = 𝑗\𝑋 = 𝑥) =
1

𝐾
∑𝐼(𝑦(𝑖) = 𝑗)

𝑖∈𝐴

                                                                                                       (13) 

 

Where, I(x) is the indicator of the function, which evaluates when the argument x is true and 0 

otherwise. Then, the new point x is assigned to the class with larger probability. 

In order to exemplify the KNN model, let´s consider the list of pumps bearing that are classified 

as critical medium or low based on the level of DPS and RUL, concerning the bearing vibration, 

as shows the Table 5.3. In order to demonstrate the K-NN model application for perform 

automatic classification o criticality of any pump´s bearing, first the model will be trained based 

on the data provided in Table 3, and after that, the verification and validation will take place 

considering the accuracy of the KNN model for the provided data. 

 

 

 

 

 

 

 

 

 

 



Table 5.3. Pump´s bearing vibration degradation. 

 

 

The Figure 5.14 shows the result of KNN classification defined by the MATLAB software. The 

Points A1and A2 up on the left side in the graph shows the pump´s with highest criticality (C) 

based on the highest DPS (85% DPS 90%) and Lowest RUL (0.5 month RUL 1 month). The 

Points B1 and B2 represent the medium criticality (M) assigned to pump´s bearing with 

medium DPS (50% DPS 75%) and medium RUL (8 month RUL 9 month), The points C1 and C2 

are assigned to the pump´s with lowest DPS (25% DPS 40%) and highest RUL (10 month RUL 

12 month). 

 



 

Figure 5.14. K-NN Pump´s bearing Criticality Classification (Reference 3). 

 

In order to verify the K-NN model criticality classification consistence, the SMLC approach has 

some graph methods to show the adherence of the model result, such as Confusion Matrix and 

Receiver Operation Characteristic Curve (ROC). 

The confusion matrix, or error matrix, shows the percentage of proper classification 

considering all classification possibilities. The type of classification in the confusion matrix is 

defined as follows: 

1. True positive: The number of predicted positive variables that is positive based on real 

classification. 

 

2. False positive: The number of predicted positive variables that is negative based on 

real classification. 

 

3. True negative: The number of predicted negative variables that is negative based on 

real classification. 

 

4. False negative: The number of predicted negative variables that is positive base on real 

classification 

Depends upon the characteristic of the classification problem, there will not be all types of 

categories described above in the Confusion Matrix. In the case of pumps´ bearing criticality 

classification, there are the true positive classification that is the input of the main diagonal in 

the matrix as shows the Figure 5.14 and one false negative classification. The C (Critical) has 2 



true classifications, the L (Low) has 2 true classifications and the M (Medium) had 3 true 

classifications as shows the Figure 5.15. In addition, there is one false negative that is predicted 

as M (Medium) but is reality is C (Critical). 

 

 

Figure 5.15. Confusion Matrix (Source: Reference 3). 

 

In fact, if thousands or millions of data are applied as training data, there will be a high 

possibility to have other types of categories in the confusion matrix such as false positive, true 

negative and false negative. 

In order to verify the SMLC performance, the KNN model results some indexes such as 

accuracy, recall and precision. The accuracy can be defined as the ratio of true prediction      

(𝑇P+ 𝑇𝑁) divided by all classifications (𝑇P + 𝑇𝑁 + 𝐹P + 𝐹𝑁) as shows the equation below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                                                         (14)  

 

By applying this equation based on the Confusion Matrix result described in the Figure 5.4 we 

have: 

 



𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
7 + 0

7 + 0 + 0 + 1
= 87,5%  

 

The recall can be defined as the ratio of the total number of true positive divided by the total 

number of true positive and false negative classified. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                                      (15)  

 

By applying this equation based on the Confusion Matrix result described in the Figure 5.4 we 

have: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
7

7 + 1
= 85,7% 

 

Finally, the precision is defined as the ratio of the total number of true positive by the total 

number of true positive plus false positive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                                                (16)  

 

By applying this equation based on the Confusion Matrix result described in the Figure 5.4 we 

have: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
7

7 + 0
= 100% 

 

The second verification method is the so-called “Receiver Operation Characteristic Curve 

(ROC)”. This graph shows the performance of the classification model considering True 

Positive Rate against False Positive rate in different classification threshold limits. The ROC 

graph is plotted based on true positive rate and False Positive Rate. 

True Positive Rate (TPR) is defined as the ratio of the total number of true positive divided by 

the total number of true positive plus false negative. 



 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

7

7 + 1
= 85,7%                                                                                                         (17)  

 

The False Positive Rate (FPR) is defined as the ratio of the total number of false positive divided 

by the total number of false positive plus true negative classified. 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

0

0 + 0
= 0%                                                                                                              (18)  

 

Therefore, the Area Under ROC curve (AUC) shows the probability that the models predict 

positive classification higher than negative classification. The AUC ranges from 0 to 1, being 1 

the best case (100% correct prediction) and zero the worst case (100% false prediction). The 

Figure 5.16 shows the ROC applied to the equipment criticality example, with AUC =83%. 

 



 

Figure 5.16. Area Under ROC Curve (AUC) (reference 2). 

 

Based on the result of the Confusion Matrix and ROC, that means, accuracy, recall, precision 

and ROC indexes, it´s possible to compare the K-NN methods result with other methods to 

define, which are the best SMLC method when considering the same Pump´s bearing input data. 

It is important to be aware that the model that achieves 100% accuracy and 100% ROC can be 

over fitted to the training input data. 

That means, if the model is over fitted, probably it will not achieve good accuracy when the 

other similar Pump bearing data are applied to the SMLC model and that is the challenge of the 

machine learning models. 

The validation of the K-NN model can be demonstrated by applying the algorithm defined in 
the first pump´s bearing dataset (Training data – Model - Test data – New Data - Validation) to 

another pump´s bearing dataset from another similar pump. 

The K-NN advantages are: 

 



1. Quite simple to implement. 

2. Robust regarding the space distribution of the data. 

3. Simple classifier update. 

4. Only distance metric and k as parameters to adjust. 

The K-NN Drawback are: 

1. Expensive testing of each new point classification, as we need to compute its distance 

to all K nearest points. 

2. Sensitiveness to noisy or irrelevant attributes. 

3. Sensitiveness to very unbalanced datasets. 

5.21.3. Unsupervised Machine Learning Cluster: The K Means Mode 

(Adapted from original source 2) 

5.21.3.1. Introduction 

The Unsupervised Machine Learning aims to define a pattern in the set of data without 

previous knowledge of data features. Therefore, the first understanding of your data set can 

start by applying the Unsupervised Machine Learning methods to understand the how your 

dataset can be organized and if there´s a pattern of such dataset based on their independent 

variable features. 

The concepts behind Unsupervised Machine Learning is cluster a set of data without previous 

knowledge about such dataset. In order to cluster the data, the Unsupervised Machine Learning 

models the dataset and try to organize it in a cluster. The further step verifies the result based 

on error and finally, If the result is satisfactory, the new data set can use the model defined 

based on the previous model and if the result is satisfactory the model is validated. 

The general steps of the machine learning process are described in Figure 5.17. 

 

 

Figure 5.17. General Unsupervised Machine Learning Steps. 

 

Concerning the maintenance engineering, the type of data related to equipment encompasses 

physical characteristics as well as performance, cost of operations, cost of preventive 



maintenance, corrective maintenance, spare parts cost. Therefore, by defining some of such 

variables, it’s possible to group equipment with similar characteristics. 

5.21.3.2. The K Means Model 

The K-Means clustering method is an Unsupervised Machine Learning method for data 

clustering. The K-Means objective is to organize a set of data point in k different clusters 

considering the k different centroids and group the data closest to each k centroids. The K 

means algorithm follows the further steps: 

1. To define the value of K, that means, the number of clusters that the data set will be 

organized. 

 

2. To define a random centroid point to start the clustering process. 

 

3. To calculate the minimum distance between the closest points, close to centroids. 

 

4. To organize the dataset point based on the nearest points closest to each centroid. 

 

5. Update the centroid point based on average positions of each group of data. 

 

6. To define the new centroids and run the process again. Compare the minimum distance 

between the centroids and the points inside each cluster. 

In order to define the distance among the k neighbours point, the distance can be calculated 

based on Euclidian distance, Manhattan Distance or Minlowski distances the following 

equations: 

 

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑(𝑋𝑖 − 𝑌𝑖)
2

𝐾

𝑖=1

                                                                                                  (19) 

Or 

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑|𝑋𝑖 − 𝑌𝑖|

𝐾

𝑖=1

                                                                                                  (20) 

Or 

𝑀𝑖𝑛𝑙𝑜𝑤𝑠𝑘𝑖 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

[
 
 
 
√∑(𝑋𝑖 − 𝑌𝑖)

𝑞

𝐾

𝑖=1

     

]
 
 
 

1
𝑞

                                                                                      (21) 

 



To assign n data points (𝑥1, 𝑥2, 𝑥3 ... 𝑥𝑛) to a j clusters (𝑐1, 𝑐2, 𝑐3 ... 𝑐𝑗). 

By defining the center of the cluster µ𝑗 for the specific 𝑗𝑡ℎ cluster, where: 

 

𝜇𝑗 =
1

⌈𝑐𝑗⌉
∑ 𝑥𝑖

𝑥𝑖∈𝑐𝑗

                                                                                                                                             (22) 

Then, minimize the distance between the data point and the cluster center represented by the 

function J, 

𝐽 = ∑ ∑ ‖𝑥𝑖 − 𝜇𝑗‖
2

𝑥𝑖∈𝑐𝑗

𝑘

𝑗=1

                                                                                                                                (23) 

This process will repeat based on the number of interactions defined or when the center of the 

cluster does not change significantly anymore. 

The best centroid points are the one that the cluster data has the minimum distance to each 

centroid and chose the centroids with the minimum distance as shows Figure 5.18. 

 

 

Figure 5.18. K-Means Centroids (Adapted from original sources 2, 3). 

 

In order to practice the K-Means concepts, we can group the equipment of a different clusters 

based on the variables such as criticality, RUL, DPS, Maintenance Cost and others. Such 



application is very important for the maintenance domain because enable to define a 

maintenance schedule agenda based on different criteria defined as data variables. 

Concerning the PHM, the K means cluster can be a very good solution for this type of problem, 

where a group of equipment need to be planned for preventive intervention based on the result 

of the RUL and DPS prediction as a result of PHM assessment in several equipment. The Table 

2 shows the summary of the twenty-four Refineries Coolers Fans bearing with different 

Degradation Progression Signature (DPS %) based on vibration degradation and Remaining 

Useful Life (RUL Months). Based On initial PHM result. 

 

Table 5.4. Heat Exchanger Fan bearing Vibration degradation. 

 

 

In order to implement the K-Means method the MATLAB software is applied as shows the Table 

5.5. The K-Means cluster result is demonstrated in the Figure 5.18, where the data is organized 

is K= 3 clusters. 

 

Table 5.5. KNN Matlab Code (Adapted from original source reference 4). 

 

 



The K-Means cluster enable a fast and precise cluster of the group of Cooler Fans with different 

values of DPS and RUL described. The Figure 19 shows the different clusters by different 

colours such as purple, yellow and blue. 

 

 

Figure 5.19. K-means cluster results (adapted from original source reference 4). 

 

The cluster 1, on the top on the left side marked by purple colour represents the fan´s bearing 

with highest RUL (9 months RUL 13 months) and lowest DPS (20% DPS 30%). 

The cluster 2, in the middle marked by yellow colour represent the fan´s bearing with medium 

RUL (5.5 months RUL 6months) and Medium DPS (25% RMS 40%). 

The cluster 3, in the left low corner marked by light blue colour represent the fan´s bearing 

with the lowest RUL (4.5 months RUL 1 month) and medium to high values of DPS (40% RMS 

99%). Therefore, the K-means methods, clustering demonstrate that, the most critical fan´s 

bearing belongs to the cluster 3, and the ones with highest degradation (70%) and lowest RUL 

(1 month) in the right high low corner of the graph must be the priority for the maintenance 

team in the current month. 

In this case, the K-Means methodology enables to give an automatic response of the group of 

equipment that needs intervention considering the PS and RUL. 

Since the PHM results applied to the Fan´s bearing RUL prediction (or other equipment) is 

totally dynamic on time, whenever new values of DPS and RUL comes out, the K-Means will 

cluster the equipment in different groups and set up a new time of preventive interventions 

for each group of equipment in each cluster. Now imagine how the challenge is for the 

maintenance team to plan hundreds of equipment under the PHM program that will produce 



different RUL every day. The K-Means cluster solve this issue and make easier the maintenance 

team maintenance planning in daily, week and month basis. Therefore, the K- means algorithm 

in the end need to be integrated with the Asset Management Digital solution. That's what I call 

Asset Management Intelligence. 

The K-Means advantages are: 

1. Simple understanding and application. 

2. K-means works fine when the cluster data is circular. 

3. Good result conversion. 

4. Easy to adapt to new examples of the dataset. 

The K-Means drawbacks are: 

1. The initial K values have a high influence on the clustering result. 

2. K-means does not account for variance. 

3. K-means does not work fine when the cluster data is not circular. 

4. K-means tells us what data point belong to which cluster, but won’t provide us with the 

probability that a given data point belong to each of possible clusters. 

5. Centroids can be influenced by outliers. 

6. Outliers might get their own cluster instead of being ignored. 

7. In higher dimensional space the centroid definition becomes more complex and 

unclear. 

5.22. Deep Learning: Image Classification 

(Adopted from original sources reference 3, 4, 9) 

The Deep Learning methods is a more sophisticated neural network with several hidden layers. 

The principles of Deep Neural network are the same on the Neural network presented before, 

but with the complexity to have several hidden networks that will give the final outputs based 

on the activation functions and weights distributed across the network. The advantages of 

Deep Neural network when compared with Neural network are the following: 

1. Deep learning models are capable of creating new features by themselves. 

2. Deep learning is able to work with unstructured data such as figures and text very well. 

3. Deep learning is precise and produce reliable results. 

Some current application of deep learning in the real world is speech translation, object 

detection and identification application used by car in their safety functions. 

Despite of all such advantages, the principle of neural network remains the same as described 

before. However, the evolution of Deep Neural Network is the so called “Convolutional Neural 

Network (CNN)”, which the main objective is to classify images. 

The “Convolutional Neural Network (CNN)” is similar to the neural network in principle but 

has a more robust concept. Since the CNN aims to classify images, the structure of the CNN is 

quite complex with different types of layer as shown the fig. 21. The elements of CNN are the 

following: 



1. Input Image. 

2. Convolution Layer. 

3. Pooling Layer. 

4. ReLu. 

5. Fully Connected. 

6. Softmax. 

7. Output Classification. 

The CCN receive the input image and send the image throughout the different CNN layers to 

define an image classification in the end. The image is represented initially in pixels matrix and 

based on filter´s matrixes, such input matrix is transformed in smaller matrix. The next step is 
to decode the smaller matrix and classify the image. This process is performed step by step by 

the different CNN layers listed above as shows the Figure 5.20 The Input Image can be the 

figure of the equipment or product that we want to identify as defected or not or even figures 

that describe equipment degradation based on graphical representation of SOH or RUL. 

 

 

Figure 5.20. CNN Structure (RUL Classification) (adapted from original sources 2, 4). 

 

The picture is loaded and input in the CNN software solution and have its intrinsic 

characteristic concerning the number of pixels. There´s a different of representation of black 

and white picture, that is represented by a matrix  𝑛 𝑥 𝑚 or a colour matrix that is represented 

by 𝑚 𝑥 𝑛 𝑥 3. The number 3 means three basic colours such as Red, Blue and Green (RBG), that 

combined generate the colour of the picture. 

5.23. Natural Language Processing 

Natural Language Processing is an interdisciplinary research field that embraces computer 

science, artificial intelligence and linguistics, its aim is to develop algorithms capable of 

analysing, representing and therefore "understanding" natural language, written or spoken, in 

a similar or even more performing way than humans. 

The deep learning, through the combination of word embedding and convolutional and 

recurrent networks, represents the most adopted approach to 



  

address problems related to the processing and understanding of natural language, in the 

industrial field, taking the form of products and applications, to better learn the evolution of 

the physical state of the components in an advanced perspective of prognostics, 

5.24. Computer Vision 

Computer Vision, or artificial vision, is that interdisciplinary field of study that deals with 

understanding how computers can reproduce processes and activities, acquire static or 

moving images, recognize them and extract information through “Digital image Processing.” 

The artificial vision has many applications: 

1. The recognition of environments and objects by remote sensing. 

 

2. Allows remote environment and object monitoring. 

 

3. Safety in the workplace: systems to monitor images of the plant, workers and their 
actions, in order to identify any risk situations and / or accidents harmful to people or 

the environment. 

 

4. Scanning of codes in QR Code. 

 

5. Usual serving, which controls the movement of machines, production lines, and 

operations. 

 

6. Autonomous cars driving thanks to visual sensors. 

 

7. Vision systems that can effectively carry out Predictive Maintenance inspection of 

components of machines and plants for an assessment of the progressive conditions of 

degradation. 

 

8. Computer Vision algorithms for monitoring industrial assets - mainly machinery - with 

a view to evaluate the preventive maintenance actions. 

 

9. Quality control systems and analysis of any product defects, in order to ensure the 

highest level of customer satisfaction and limit any problems in the post-sales phase. 

D modelling; movement tracking and diagnostic analysis in telemedicine; indexing of image 

databases; it is able to move in the surrounding environment and to "recognize" the road, signs, 

pedestrians, predictive maintenance, control of production processes and safety support in 

industrial plants. 

5.25. Immersive Technologies 

(Adapted from original source reference 18 and 24)  

Immersive technologies allow users to expand their audio-visual reception and to interact with 

a virtual surrounding in real time by means of tools. Growing computing power and the 



shrinking and mobility of devices in the past decades have increased the importance of these 

technologies on the market. Depending on the depth of integration, one can distinguish 

augmented, virtual, or mixed reality. 

Based on Paul Milgram’s (1994) definition of the “reality-virtuality continuum”, mixed reality 

includes all the facets of a spectrum between absolute reality and absolute virtuality. 

Augmented reality can therefore be seen as a part of mixed reality close to reality. 

All three approaches share the goal to improve the time-to-information ratio and the 

improvement of the quality of information, whereby the fields of application can be very 

different. 

5.25.1. Augmented Reality (AR) 

(Adapted from original source reference 24) 

Augmented Reality enhances our real world (e.g. physical objects or places) interactively with 

data and information. In the simplest implementation, even a basic mobile maintenance app 

could be considered an augmented reality application, as it delivers information, or data, with 

pinpoint accuracy. For the most part, however, it involves the visual addition of a simulated 

plane added onto our view of reality. 

Augmented reality applications require basic software and hardware for display, tracking for 

positioning and adapting to movement and, if necessary, interaction possibilities. The 

provision of information can be triggered by image recognition like QR codes, GPS locations, 

radio beacons like NFC or RFID. Hardware is usually furnished by smartphones, tablets, or data 

glasses. A distinction can be made between see-through displays and displays where computer 

generated images are added to live videos. Depending on the use case, augmented reality 

applications can offer real time operating or sensor data, specification sheets, explanatory 

videos, directions, or 3D-models. It enables the representation of properties beyond the human 

senses, e. g. infrared radiation, high frequencies etc. 

AR Applications can be important in supporting time-critical operations. Where information 

was previously given in person, in writing or by telephone, it is now possible to transmit it 

directly and digitally. Another advantage shows in scenarios where objects cannot be 

physically changed. Systems that are still in operation can be viewed virtually in the smallest 

detail. 

Two of the biggest challenges are data quality and platform usability. On the one hand, it is key 

to ensure that data is correct and reliable, also to control the safe execution of activities, on the 

other hand, handling must be facilitated for users to increase acceptance. Furthermore, it 

cannot be assumed that all data is validated, and interfaces are standardized. 

Possible Applications: 

 Navigation aid on large terrains or unfamiliar places, e. g. by displaying virtual arrow 
symbols. 

 

 Display of technical plans and documentation files and component history. 

 



 Display of technical data based on identification markers such as pressure, 

temperature, throughput, performance. Furthermore, the information whether system 

parts are de-energized can be relevant for executing units. 

 

 Although the number of providers and possibilities has increased considerably in 
recent years, one must consider carefully which system to choose. This applies not only 

to the software but also to the hardware. System integration should also be 

implemented as openly as possible regarding future use. 

 

 In addition, the time that has to be invested in the preparation and provision of 
information must not be underestimated. Scaling up to a larger number of employees 

can also be very expensive (hardware, licenses). 

5.25.2. Virtual Reality (VR) 

Virtual reality creates a simulated and data-based environment (e. g. a virtual power-plant) in 

real time, in which the users immerse themselves in a virtual environment by wearing closed 

head-mounted displays, other helmets or data glasses, often linked to graphic processing 

computers. The navigation and interaction in the computer-generated environment are 

accomplished by head and body movements, gestures as well as input devices like keyboards 

or handheld controllers. While augmented and mixed reality include certain aspects of reality, 

virtual reality shuts it out completely. 

 The objective is a realistic and responsive experience, and therefore comes in handy for (a) 

the simulation of important processes, for which repetition and routine is essential, or (b) the 

visualization of objects or places, which can’t be reached physically by the user. Ideally, videos, 

data, or 3D models are integrated seamlessly. 

Possible Applications are: 

 Simulation of an authentic learning surrounding for new employees, in settings which 

cannot be realized during ongoing operations, or which are virtually guided by retired, 

not available or expensive experienced colleagues. 

 

 Simulations of safety-critical procedures which can’t be trained in real-life: e.g. 

emergency power up or shut down of a plant. The software not only allows control of 

the workflow but can also, for example, test response times in order to certify staff for 

real operations. 

 

 Communication-device: based on the experience of numerous video calls during the 

Covid19 pandemic, it has become clear that conversations in virtual spaces, without 

visual and auditory spatial perspective, gestures of the communication partners and 

independent focus as it happens in real conversations, are tiring in the long run. 

This could be facilitated by VR. 

The fact that one usually deals with self-contained systems means that the simulated world 

must be created from scratch. This not only requires timing resources for the design and the 

preparation of the information but also computing power for a high and realistic level of detail. 



Today, however, it is already possible to combine large-scale scans of spaces and buildings with 

existing 3D models. In this way, factory halls and machines can be shown realistically. Since 

the applications are not usually used on a daily basis and not every employee needs their own 

equipment, the focus can also be placed on the quality of the tools and simulations. 

It is also important that reality is perceived differently by each person. Colour can be described 

physically, but the perception itself is a subjective experience and can also lead to greater 

problems in virtual worlds than in reality due to colour blindness. 

5.25.3. Mixed Reality 

While augmented reality and mixed reality are often used synonymously, the latter offers a 

broader spectrum of integration between the physical world and simulated elements. Similar 

to augmented reality, it would be conceivable to integrate the real world into the virtual one or 

to merge the two on an equal status. 

The two worlds coexist and thereby users can interact with physical and virtual objects alike 

or both worlds affect each other without user input. Normally the environment adapts through 

navigation. Mixed reality offers a complementary type of human-technology interaction. 

Possible Applications are: 

1. Virtual operating panels and control components: by virtually interacting with controls 

users can operate physical components. 

 

2. Maintenance measures performed by a virtually controlled robot: mixed reality allows 

maintaining safety-critical limits (only certain actions are allowed), a view enhanced 

by data (e.g at sensors). 

Apart from the progress made, the application of mixed reality in the maintenance sector is 

still in its early stages. The implementations often relate to individual specific use cases and 

are therefore associated with a high level of effort. Furthermore, few standards have been able 

to establish themselves so far and hardware is often a closed system. 

5.26. Others Applications 

5.26.1. The Telepresence 

It is a phenomenon that allows people to interact and feel connected to the world outside their 

physical body through technology. 

5.26.2. Holography 

It is the creation of a 3D image in space that can be explored from all angles improving the use 

of Digital Twin see paragraph 8. 

The Immersive technologies, used to create a virtual reality of physical are suitable: 

1. for stimulating the maintenance activities to be carried out in the best safe, qualitative 

and efficient way. 



 

2. for designing maintenance actions and works that are planned or scheduled 

quantitatively and qualitatively in an efficient way. 

 

3. for designing and improving Good Maintenance Practices. 

 

4. for developing effective training on virtual plants. 

 

5. for implementing the maintenance engineering methods as RCA, FMECA and diagnostic 

failure analysis. The maintenance by remote is using the various Immersive 
Applications and software to support the operators through the wearable technologies, 

using: 

5.26.3. Smartphones 

They are required to be equipped with a Global Positioning System (GPS) magnetometer, 

(compass)and internet connections and they must be able to display a video stream in real 

time. Mobile phones frame the surrounding environment in real time. 

5.26.4. Computers 

They are based on the use of markers, which are stylized drawings in black and white that are 

shown to the webcam and that the computer recognizes, and on which multimedia content is 

superimposed in real time: video, audio, 3D objects, etc. 

5.26.5. Chatbot or Chatterbot 

It is a software designed to communicate between computers and a person through predefined 

dialogue systems and schemes. 

They are used as support systems in remote maintenance interventions to guide or assist the 

operator by providing verbal instructions to perform the work in the best possible way or in 

case of critical situations. 

5.27. Drones 

Using an unmanned aerial vehicle (UAV) with a camera that wirelessly transmits video feeds 

to goggles, headphones, a mobile device, or other display The user has a First View Person 

(FPV) of the environment people, plants and machines in which the drone flies to control the 

status of machine and plants with appropriate predictive technologies. Using Drones to carry 

out site and industrial plant inspections brings you resource savings and important technical 

advantages: 

1. It eliminates the costs for securing the operational area. 

2. Reduces the risk of workplace accidents. 

3. Returns a point of view otherwise inaccessible. 

4. It allows a real-time analysis. 

5. Speed up and streamline operations. 

6. Significantly increase the quantity and quality of data and information in your 
possession. 



7. It allows faithful 3D construction. 

8. To control heat radiation from leakages or old pipes. 

9. To access narrow ducts with unknown safety risks. 10 .to check Damage or overgrowth 

of PV panels. 

10. To measure 360-degree scan (e.g. thermal imaging) of vents and chimneys. 

Being able to observe the structure closely offers you the possibility to find any anomalies, 

deterioration and damage caused by degradation or meteorological factors, intervening in time 

thanks to the post-processing that allows you to measure them in a precise and timely manner. 

The competence for the regulation of the drones operations is in charge of EASA (European 

Union Aviation Safety Agency). To make the regulatory process more practical and efficient 
and understand what requirements are to be met, EASA has established some categories for 

both operations and drones. 

In particular, the first categorization depends on the type of flight that is performed with the 

drones as follows: 

1. Open category. 

2. Specific Category. 

3. Certified category. 

The recommended methodology by EASA is the “Specific Operations Risk Assessment” (SORA) 

developed by JARUS. This is a new methodology which, through a holistic approach, ensures 

that all possible risks are assessed and proposes mitigations to keep them under control. The 

key requirements are the proven competence for the pilot operating from remote. 

5.28. The Creation of Digital Twin Trough the Convergence of I.T. & O.T. 

Historically, the Information Technology (IT) and Operational Technology (OT/operations) 

departments within a company have functioned fairly independently. Operations kept the 

assets running smoothly and in good condition, while IT managed business applications from 

the front office. But companies are changing. To keep up, the IT/OT relationship must also 

change. 

Industry leaders recognize that the operational data they use to support real-time decision 

making could create additional value for the company. But these data must be merged with IT 

data in a meaningful way and made accessible across the organization. With this fusion, IT will 

help OT align with business systems. At the same time, IT needs to achieve the vision of a 

connected asset by driving innovation and minimizing downtime. But to get there, IT needs the 

knowledge and support of OT, as operations departments understand and control the assets. 

The technology and operation of industrial assets are complex, but the adoption of IoT and its 

use with OT platforms enables the use of “digital twins” to manage, monitor, and maintain 

assets. A digital twin is a virtual representation of a real- world physical entity or group of 

interrelated physical entities (system), that allows real-time simulation of behaviors and 

scenarios (as a result of updated real-time data collected from several sources and its 

utilization within a digital model) in order to prognosticate how the physical object will behave 

in the real world, providing reliable information for an optimal decision making. The digital 

twin connects complex assets and their OT systems to an IT environment by capturing data to 



monitor performance, deterioration and failure, location and safety compliance, and remote 

monitoring systems for scheduling and asset utilization. 

Through data fusion, digital twins become virtual and digital representations of physical 

entities or systems. However, the clone created with IT and OT convergence to forecast failures, 

demand, customer behaviour, or degradation of assets is not complete since it lacks 

engineering knowledge. This happens because the digital engineering models developed 

during the engineering phase of projects do not typically play a role in the operational phase. 

Therefore, digital transformation demands that Engineering Technology (ET) be included in 

the IT/OT convergence process as the importance of integrating product design increases (see 

Figure 5.21). For that purpose, digital twins must be complemented by other information to 
assess the overall condition of the whole fleet/system, including information from design and 

manufacturing, as this obviously contains the physical knowledge of assets. 

 

 

Figure 5.21. Engineering Technology (ET) included in the IT/OT convergence process. 

 

The integration of asset information throughout the entire lifecycle is required to make 

accurate health assessments, determine the probability of a shutdown or slowdown, and avoid 

black swans and other unexpected or unknown asset behaviours. Moreover, the lack of data on 

advanced degradation makes the data- driven approach, where IT and OT are only actors, 

vulnerable to such situations and ET is slowly gaining entry to the convergence conversation, 

even though engineering models often remain stranded in information silos, inhibiting the 

ability to leverage this information to optimize operations. 

Despite these challenges, hybrid models comprising engineering knowledge and data collected 

from the field will soon be part of digitization all over the world. In short, the engineering 

technology (ET) of an asset, together with IT and OT, will help O&M departments forecast 



problems, do better planning, and improve performance. Fortunately, it is now possible for 

companies to merge their IT, OT, and ET to enable asset performance modelling to deliver 

actionable intelligence for decision support. 

5.29. BIM 

BIM (Building Information Modelling) is a process that supports document management, 

coordination and simulation throughout the entire life cycle of the project (planning, design, 

construction, management and maintenance) starting from the creation of a model Smart 3D. 

The information included and recorded in this virtual model is very diverse and increasingly 

complete. It ranges from the stakeholders involved in the process, the plant model itself, 

technical, structural and installation aspects, technical data of equipment, economics, 

materials, execution phases, maintenance, etc. 

Each stakeholder involved in the construction, modification, maintenance or operation process 

is part of the BIM work method, each of them having their own skills and access to the part of 

information that is relevant to them. That is why it is essential that all of them understand the 
BIM method and how its tools work. 

The information provided in the BIM model comes from different types of software, modeling 

programs, structural calculation, MEP, budgeting software, energy , analysis, etc. Knowledge of 

all these tools and the interoperability capacity between them is essential for a correct 

implementation of BIM. 

The advantages of BIM Applications over a traditional work method are: 

1. BIM platforms automatically update the information that is edited in any part of the 

model. This means that if an element is modified in a plant, it is automatically modified 

in sections, elevations and 3D views, just as if a feature were modified in a list - it 

changes automatically throughout the project. There is no possibility for human error. 

The information is always consistent. 

 

2. Given that all stakeholders work on a single model, there is no possibility that 

information will be lost due to a lack of coordination between versions handled by 

different professionals. 

 

3. By establishing this method of working in parallel, all stakeholders can from the 

beginning propose the options they consider most convenient for the project, directly 

involving the entire organization. The project, throughout its cycle, is developed in real 

time in a coordinated way in a collaborative environment, and always under the 

supervision of the client. 

BIM allows any required information to be available at all times, in terms of design, technical, 

costs, execution times, maintenance, etc. It also allows real-time modifications that will 

automatically update all these parameters, increasing the degree of customization and 

adaptation of the project to the client's needs. 

Facility management tasks and maintenance complex works become much more efficient, with 

all the asset’s actual information being on demand. 



5.30. Machine to Machine (M2M) 

(Adapted from original source reference 27) 

On M2M, acronym for Machine-to-machine, in general refers to telemetry and telematics 

technologies and applications that use wireless networks. Machine-to-machine also indicates 

a set of software and applications that improve the efficiency and quality of the processes 

typical of ERP, operations and maintenance. 

The term M2M is constantly evolving, meanings of M2M include the terms Machine-to-Human 

(M2H), Machine-to-Enterprise (M2E) and Mobile-to-Mobile describes communications that do 

not involve landlines. 

The primary purpose of machine-to-machine communication is to collect data and transmit it 

to a network. The main feature of the machine to machine is to create a connection network 

between different machines: information is collected through sensors, and then sent and 

received, through a network, which can also use a server to collect and store the data stream. 

For this process, which is completely digitized, it is not important how far they actually are, as 
long as the devices are connected to the Internet to create real communication between 

machines, even within a closed system. 

The more important thing it is that data is changed in real time, the more essential it will be to 

use a high-performance communication infrastructure, such as optical fiber or the new 5G 

mobile standard. 

Machine-to-machine communication, M2M for short, represents the predominantly automatic 

exchange of information between technical equipment such as machines, automatic devices, 

vehicles, measuring features, performance between them or through a central data processing 

system. 

5.30.1. Requirements 

The European Institute for Telecommunications Standards (ETSI), pursues the goal of creating 

international standards for information and communication technologies. ETSI defines the 

following requirements for machine-to-machine systems: 

1. Scalability 

The system must work efficiently even after adding other connected devices. 

2. Anonymity 

The system must be able to hide the identity of the devices. 

3. Protocol 

M2M systems must be able to record failed installations, anomalies or incorrect data 

and keep the records for later consultation. 

4. The principles of machine-to-machine communication must be respected. 



5. Transmission Methods 

The Systems must support different transmission methods, such as Unicast, Anycast, 

Multicast and Broadcast, and be able to switch between them to reduce the load of M2M 

data transmission. 

6. Information transmission planning: 

The system must be able to define time points for data transmission, as well as manage 

or delay communications according to their priority. 

7. Choice of communication channel: 

The communication channels within the machine-to-machine system must be 

optimized on the basis of rules relating to transmission errors, delays and network 
costs. 

8. In addition to faster communication channels and the ability to schedule data 

transmissions over time, machine-to-machine communication offers other benefits: 

 

 Remote operation and control of devices. 

 Reduced maintenance requirements. 

 Failure prevention and more physical assets availability and costs reduction. 

 Optimiztion of operations, yield process and productivity. 

The machine-to-machine also offers new opportunities as machine learning to implement 

predictive and prognostic maintenance to extend the residual life of physical assets. 

5.31. Additive Manufacturing-3D Printing 

(Adapted from original source reference 20) 

Additive Manufacturing (AM), also referred to as 3D printing, is a layer- by-layer technique of 
producing three-dimensional (3D) objects directly from a digital model. Unlike conventional 

subtractive processes that cut away material from a larger work piece, additive manufacturing 

builds a finished piece in successive layers, each one adhering to the previous. 

Since its emergence 25 years ago, additive manufacturing has found applications in industries 

ranging from aerospace to dentistry and orthodontics. Across all industries, additive 

manufacturing accounted for $1.3B in worldwide sales of materials, equipment, and services 

in 2010 and is poised to exceed $3B by 2016 (processes). 

The 3D printing technology contrasts with traditional subtractive production techniques and 

represents a real integration between the real world and the virtual world. 

Additive manufacturing is also often used for prototyping as well as for the actual production 

of limited runs of products. Additive Manufacturing does not require the production of molds 

and allows highly customized productions. 



The objects to be printed are digitally defined by the CAD (Computer- Aided-Design) software 

used to create files that essentially "divide" the object into ultra-thin layers. This information 

guides the path of a nozzle or print head as it precisely deposits the material on the previous 

layer. Or, a laser or electron beam melts or partially melts into a bed of powdered material. 

When the materials cool or are cured, they fuse together to form a three-dimensional object. 

This technology is useful to supply, from remote in short time through IOT, spare parts, and 

components to restore items and machines, reducing the spare parts inventory level and the 

supply waiting time. 

5.32. Applications of Additive Manufacturing Technologies 

The concept of additive manufacturing, over time, has given rise to many technologies, all 

different from each other, which are used in the most varied scientific and industrial processes. 

5.32.1. Photo Polymerization 

This is the first additive technology born in the 1990s. It is based on the concept of hardening 

a polymeric material through photo polymerization. The finished piece is obtained through a 

process of light radiation or using a laser aiming the lighting on the parts of the layer that we 

want hard. 

5.32.2. Material Extrusion 

This technology is based on the softening of a material supplied by the machine in the form of 

filament and with which the pieces are built. It is particularly popular for amateur and domestic 

use, especially for the production of niche material (for example, metals). 

5.32.3. Material Jetting 

It consists in the creation of drops of material that are supplied to the printer in various forms 

and, subsequently, deposited directly on the piece. Various materials can be used, from 

polymeric to metallic, even in color. 

5.32.4. Bending Jetting 

It is very similar to material jetting technology. The difference consists in using a powder bed 

as a production process. A sequence, that first involves the drafting of the reference layer and 

then the deposition on it of a material, which serves to glue the previously applied dust 

particles, is used. This material is called "binder". 

5.32.5. Powder Bed Melting 

As with bending jetting, this technology also uses a powder bed process. On each layer, the 

section of the component under construction is exposed by an energy source (laser or electron 

beam) which liquefies the material. The material then solidifies and the finished piece is 

obtained. 

These processes were previously categorized by a variety of researchers, and have now been 

Standardized by the ASTM International Committee F42 on Additive Manufacturing 



Technologies into the seven classes. The standard presents an overview of process classes, 

examples of leading companies that make machines for each process, typical materials classes, 

and the most popular markets for use. 

5.33. Corobots -Collaborative Robots 

(Adapted from original source reference 25) 

Corobotic is part of the Robotic engineering discipline, that studies and develops methods that 

allow a collaborative robot to perform specific tasks by automatically reproducing human 

work. Although robotics is a branch of engineering, more precisely of mechatronics, it brings 

together approaches from many disciplines both of a humanistic, linguistic and scientific 

nature: biology, physiology, electronics, physics. 

The word robotic comes from the Czech robota, which means "hard work" or "forced labor". 

This term was introduced by the Czech writer Karel Čapek, in 1920. (Rossum's Universal 

Robots). 

The English derivative term robotics, according to the Oxford English Dictionary, appears for 
the first time in a 1941 science fiction short story by writer Isaac Asimov entitled Liar (1941). 

It is a robot specifically designed for direct interaction with a human within a defined 

safeguarded workspace where both (the robot and the human) can perform tasks or processes 

simultaneously during automatic operation. 

Today there are many types of robots called Cobots (Collaborative Robots) able to support 

the operators to carry out activities improving safety, ergonomic and productivity. 

Maintenance is using Robots as support tools-equipment to improve safety, productivity, 

quality precision and ergonomics on maintenance works. The Cobots are easy to program, 

quick to implement and safe to use. Cobots are boosting operation and maintenance activities 

in many companies of all sizes and sectors, can be quickly integrated into activities that are 

different from time to time, typical of the maintenance ensure a high level of accuracy and 

reliability increasing the operational maintainability. 

5.34. Cyber Security and Blockchain 

(Adapted the original source reference 27) 

Information security is the set of means and technologies aimed at protecting IT systems in 

terms of availability, confidentiality and integrity of any kind of assets and related know-how 

and properties. 

Security involves technical, organizational, legal and human elements. To assess security, it is 

usually necessary to identify the threats, vulnerabilities and risks associated with IT assets 

including physical assets, in order to protect them from possible attacks (internal or external) 

that could cause direct or indirect damage with an impact exceeding a certain tolerability 

threshold (eg . economic, political- social, reputation, etc.) to an organization. 



In addition to the three fundamental properties (availability, confidentiality, integrity) they can 

also be considered: authenticity, responsibility and reliability. 

Physical goods represent an economic value for their installation and operating cost and 

constitute the technical Capacity to produce products or perform services, they must be 

protected from 

 Direct and indirect sabotage. 

 Damage caused by actions external to machines, plants, systems. 

 Theft of confidential information such as: 

Data production capacity, productivity, process characteristics, research projects, licenses and 

patents, contracts with customers and suppliers, technological innovations, etc. 

It requires an understanding of potential information threats, such as viruses and other 

malicious codes. Cybersecurity strategies include identity management, risk management, 

incident management and is optimized to levels that business leaders define, balancing the 

resources required with usability/manageability and the amount of risk offset. 

It is a factor behind the development of industry 4.0 to prevent the interactions and contacts 

developed within the cyber physical system from being subject to cyber-attacks The protection 

of technologies, patents, contracts and performances related to industry 4.0 requires the 

development of adequate IT security tools. 

A Blockchain (literally "chain of blocks") is a shared and "immutable" data structure. It is 

defined as a digital register whose entries are grouped into "blocks", concatenated in 

chronological order, and whose integrity is guaranteed by the use of cryptography. 

Although its size is destined to grow over time, it is immutable since, as a rule, its content once 

written is no longer modifiable or eliminable, unless the entire structure is invalidated. 

These technologies are included in the broader family of Distributed Ledgers, i.e. systems that 

are based on a distributed ledger, which can be read and modified by multiple nodes on a 

network. The nodes involved are not required to know each other's identity or trust each other. 

In fact, to ensure consistency between the various copies, the addition of a new block is globally 

governed by a shared protocol. 

5.35. Mechatronics 

(Adapted from publications of Rensselaer institute) 

Mechatronics is a branch of Engineering that focuses on the design, manufacture and 

maintenance of physical assets that have both mechanical and electronic components. The 

term was coined in 1969 by the Japanese engineer Tetsuro Mori, to describe the synergy that 

exists between electronic, control systems and the mechanical machine they regulate. 

Mechatronics arises from the need to create know-how in the field of modelling, simulation 

and prototyping of control systems, focusing mainly on Motion Control Systems. 



Since then, the meaning of the term has expanded to include the integration of many other 

disciplines, computer engineering, systems engineering, software and hardware as reported in 

the logo of Rensselaer Polytechnic Institute founded in 1996 (Troy New York) (see Figure 

5.22). 

 

 

Figure 5.22. What means mechatronics. 

 

The main fields of application are robotics, industrial automation, bio mechatronics, avionics, 

transportation, and all automatic-electronic mechanical devices installed in any advanced 

machine and plants. In addition to the technical specializations of traditional maintenance, 

Mechatronic Maintenance has also been added, particularly involved in the Maintenance 4.0 

technologies applied to physical assets. 

5.36. Nanotechnologies 

Nanotechnologies covers that branch of science that uses, or creates, materials with 
nanometric dimensions, that is, from ten thousand to one million times smaller than a 

millimeter. 

The continuous technological evolution has made it possible to observe, understand, predict 

and, finally, build advanced materials and systems belonging to the nano world with new and 

excellent physical characteristics. 

In this way maintenance can achieve better performances and extension life of components 

reducing the maintenance costs and increasing the physical asset useful life. 



A world that follows different laws and properties than those present on higher scales and 

appreciable by our senses. Quantum mechanics is the master, altering the physical, chemical, 

optical and electro- magnetic properties of the materials. 

Thanks to nanotechnologies, advanced materials and components with mechanical, chemical 

and electrical characteristics have been developed and continue to be made, which have a 

longer life and much higher resistance while decreasing the maintenance needs. 

There are many innovative materials available as results of research and development of 

Nanotechnologies as: 

1. New composite materials and adhesives with high fire performance. 

 

2. High performance lightweight, multifunctional advanced materials and related 

components, designed for assembly and disassembly. 

 

3. Coating with better chemical functionality and / or nanostructured materials, with high 

compatibility with existing technologies. 

 

4. Polymeric materials and related micro and nanocomposites. 

 

5. Nanomaterials and nanometric systems for advanced electronics and optics 

 

6. New materials with high biodegradability and biocompatibility 

Above all the Composite materials represent the evolution of science and technology of 

materials by fusing within them the best characteristics of several materials, produced with 

innovative technologies that determine their very high physical characteristics. The study of 

composites is a materials design philosophy that aims to optimize the composition of the 

material at the same time with the structural optimization project in a convergent and 

interactive process. As mentioned, thanks to their limited size, the fibers have an extraordinary 

structural perfection; this feature, combined with the intrinsic properties of the constituent 

materials, ensures them: 

1. High mechanical resistance. 

2. Very high elastic modulus. 

3. Very low specific weight 

4. Linear elastic behaviour up to failure. 

The more important example is the Graphene that consists of carbon atoms arranged in a 

honeycomb lattice. It forms an almost transparent sheet of about one atom thick and is 200 

times stronger than steel, but six times lighter. 

Almost two-dimensional, it interacts with light and other materials in a unique way, for 

example, it absorbs only about 2% of light and is impermeable even to lighter gasses such as 

hydrogen and helium. It is also a highly efficient conductor of both heat and electricity. 

The electronics industry has embraced graphene and it is not difficult to see why. 



This material is perfect for touchscreens having higher Resistance, Flexibility, Reliability and 

Maintainability. 

Because the major part of failures are coming from the wear of the materials that are 

representing almost 25-35 % of the maintenance annual cost, the benefits of adoption of 

innovative and appropriate materials more resistant represent in the medium term a success 

factor for a sustainable and Competitive Maintenance. Better Materials means less failures, less 

spare parts, less man hours, less work, less plants shutdown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. PART IV: APPLICATIONS OF TECHNOLOGIES 4.0 

6.1. Information Technologies & Operational Technologies Integration 

In the last time in manufacturing industries, Information Technologies (IT) and Operational 

Technologies (OT) worked independently of each other. IT technologies were mainly used to 

support management and administration, while OT controlled machinery and plants on the 

production floor without processing information from other parts of the organization. 

Today, industry 4.0 developments, such as the Internet of Things (IoT), have brought together 

IT and OT technologies, opening a new era in the sign of intelligent manufacturing and 

unified business or at least operations and maintenance management. 

With industry 4.0 this paradigm is bound to change. Smart machines leverage data from 

multiple sources to adapt production to ever-changing circumstances, delivering many of the 

features expected of an intelligent factory: automatic corrections, optimized order routing, 

complete organizational visibility, predictive maintenance, etc. 

The integration between Information Technology and Operational Technology is one of the 

enabling factors for Industry 4.0, that become fundamental in companies with a high intensity 

and concentration of physical assets and provides for a radical change of the traditional 

separation between IT and OT. 

In Industry 4.0, digital does not stop at Information technologies, but is structurally and 

logically integrated with the operational technologies. Consequently, the main objective of 

industry 4.0 is the convergence and coexistence between the operation technology (OT) and 

information technology (IT) systems. 

6.2. Horizontal and Vertical Integrations 

(adapted from original source reference 27) 

The adoption of interconnected technologies, both horizontally and 

vertically, makes it possible to analyse big data and create open systems for their sharing in 

real time. This will allow digitization and integration along the entire value chain, in order to 

create an efficient and effective automated flow. 

Horizontal integration supports the management of information between business areas that 

contribute to the definition of the life cycle of a product and the consequent life cycle of physical 

assets. Vertical integration allows the company to relate to all members of the value chain, from 

suppliers to end customers, determining shared working standards and objectives. 

In general, time and cost savings are achieved through the production process and an increase 

in product value for the customer. 

To manage this complexity, new solutions are emerging, such as the appropriate operating 

systems, a cloud-based software and services platforms for the collection and analysis of data 

from industrial production, from smart buildings which allows you to use 'apps' dedicated to 

the optimization of assets and processes, and can be used in Platform-as-a-Service. 



6.3. Horizontal Integration 

From an operational point of view, a horizontally integrated company bases its business 

around the core competencies it has and establishes partnerships with other companies to 

build an end- to-and value chain. 

The horizontal integration consists in the expansion of the business activity to products, 

services, production technologies, market policies, processes, manufacturing phases and know 

how. 

To achieve horizontal integration and implement the tools of the Industry4.0 paradigm, it is 

necessary that all the players in the same supply chain are willing to collaborate. 

The aim is to implement a digital transformation process that brings traditional production 

systems to evolution into cyber-physical production systems that exploit intelligent solutions 

within an intelligent factory or company. 

In general, horizontal integration is articulated on several levels. 

Within the same production plant. Machines and production units are always connected and 
each transform into an object with well-defined properties within the production network. 

They constantly communicate the performance status using Key Performance Indicators and, 

together they respond to the needs of dynamic integrated lean and flexible production. 

The ultimate goal is that an interconnected production line is able to dynamically respond to 

the status of each machine to increase efficiency by reducing downtime through learning 

machine actions implementing appropriate predictive and prognostic actions to improve the 

Overall Effectiveness Equipment (OEE). 

Operations and Maintenance 4.0 technologies promote horizontal integration between 

production management systems (Manufacturing Execution System). 

Horizontal integration is essential when using Full Service, Contracts or Global maintenance 

services carried out by the manufacturers on machines, because through an integrated 

Operational Technology and Information technology even remotely it is possible to achieve 

high levels of service at low cost. 

Horizontal integration, on the other hand, supports the management of information between 

business areas that contribute to define, operate and maintain the entire life cycle of a physical 

asset. 

6.4. Vertical Integration 

A vertically integrated company maintains the entire supply chain internally, starting with 

product development and design and following with production, marketing, sales and 

distribution. 

Vertical integration in Industry 4.0 allows you to connect all logic levels within the factory: 

production, maintenance, utilities, logistics etc. Data flows freely up and down these levels so 

that strategic and tactical decisions can be driven by data. 



How they are different but complementary to the technological-production chain in which the 

company operates. 

Vertical integration is essential in the operational and organizational processes of 

manufacturing and maintenance, to measure and control the efficiency and Effectiveness of 

Each production unit, to verify the maintenance policies adopted and to identify the critical 

areas and items for improvements. 

In this scenario, the data of the production facilities (e.g. unexpected delays) are shared 

throughout the factory and, where possible, the production activities are automatically moved 

between other different lines or plants in order to respond quickly and efficiently to production 

changes and needs. 

6.5. BIM for Maintenance Complex Works Planning 

The use of BIM methodology is very widespread. Below we have included a description of how 

we use it to plan large-scale plant maintenance works. 

6.5.1. Utilization for Large-Scale Maintenance Works 

During large-scale maintenance works, for example a turnaround, it is common to find, at any 

unexpected moment, that there are incompatibilities between several tasks meaning they 

cannot be carried out at the same time. This is either because some tasks hinder the 

performance of others, for example, due to the lack of physical space in the area, or certain 

tasks are not compatible in the same area, or for safety reasons, for example, it is not possible 

to carry out work within the safety radius of a crane moving loads. 

These incompatibilities, although unforeseen, still represent inefficiencies for maintenance. 

They represent failures in the planning of the work to be carried out and they cause a loss of 

time and an increase in maintenance costs. At the same time, they can produce confrontations 

between the operators involved in these incompatible tasks, even more so if the work is to be 

carried out by different companies. 

Due to all of the above, we have set ourselves the challenge of solving these problems before 

starting the plant turnaround. 

6.5.2. Four Planning of Turnaround Works 

Planning shutdown works is a complex activity. The tighter the timetable, the greater the 

control needed for carrying out the work. We are therefore talking about planning various 

works to be carried out in a small area of land, at different heights, with different risks and 

which are carried out by a few hundred people. These are works that are carried out 24 hours 

a day, 7 days a week, during several weeks. All this translates into managing a mixture of 

people, machines, scaffolding, different specialties, risks, ... all occupying the same space. 

That is why we have work schedules with several thousand activities to be carried out, by many 

different people in different equipment, and everything must be perfectly coordinated so that 

the shutdown ends on the scheduled date, and within the budgeted cost. 



The usual planning of works takes into account the concatenation of activities, in a logical way, 

that allows the achievement of the cost and timing objectives in the most efficient way possible. 

 This is usually achieved by managing three variables that must be minimized, being cost, time 

and resources. However, we always seem to forget that the works are carried out in a physical 

space, which is made up of 3 dimensions. If we unite these 3 dimensions, the space where the 

work is going to be carried out, with the variable time, we are actually talking about 4 

dimensions and that is the reason why we are going to call this form 4D PLANNING. 

6.6. Corobots Utilization 

(Adapted from original source reference 25) 

Until now, robots have always been big, strong, robust devices that work on specific tasks 

which were designed for them. They have been isolated from humans, been kept in cages and 

surrounded by guards for safety purposes. And it took a lot of programming skills just to set up 

them and make the work in the right way (see Figure 6.1). 

Collaborative robots, on the other hand, are designed to work with humans. Their design and 
construction include safety features such as force feedback, low-inertia servomotors, elastic 

actuators, and collision detection technology that limit their power and force capabilities to 

levels suitable for contact. More compact than conventional robots, cobots generally have 

lightweight frames with soft, rounded edges and minimized pinch points. In reality, they are 

“forced limited robots”. 

Most of the collaborative robots can be easily taught by demonstration, rather than requiring 

a deep knowledge of programming. The majority can also be moved around the factory floor in 

order to perform a different task at another station. Being more flexible, they can perform more 

tasks and even in the future do whatever a human can do. 

 

 

Figure 6.1. Collaborative robots operating in 3 dimensions. 

 



The ability of collaborative robots to share tasks with humans and flexibly adapt to new 

requirements can provide high returns on investment in a wide variety of industrial 

applications: 

1. Assembly. Screwdriving, Part Insertion. 

2. Dispensing. Gluing, Sealing, Painting. 

3. Finishing. Sanding, Polishing. 

4. Machine Tending. CNC, Injection Mold, ICT. 

5. Material Handling. Packaging, Palletizing, Bin Picking, Kitting. 

6. Material Removal. 

7. Quality Inspection. 
8. Welding. 

Cobots have four types of collaboration: 

1. Safety Monitored Stop 

This kind of collaborative feature is used when a robot is mostly working on its own, 

but occasionally a human might need to enter its workspace. For example, when a 

certain operation must be performed on a part while it is in the robot’s space. Take a 

heavy part that has to be handled by a robot and a worker needs to do a secondary 

operation on it while the robot is still handling the part. This way the person can work 

on the part and still be in the robot’s space. If the human enters the restricted area in 

the pre-determined safety zone, the robot will stop all movement altogether. The robot 

is not shut down, but the brakes are on. 

2. Hand Guiding 

This type of collaborative application is used for hand guiding or path teaching. It is 

used to teach paths quickly for pick and place applications for instance, using a Force 

Torque Sensor that reads forces applied on the robot tool. This type of collaboration 

only applies to the robot while it is performing this particular function, which means 

that while the robot is functioning in its other modes, the robot still needs to have 

safeguarding in place. 

3. Speed and Separation Monitoring 

The environment of the robot is monitored by lasers or a vision system that tracks the 

position of the workers. The robot will act within the functions of the safety zones that 

have been pre-designed for it. If the human is within a certain safety zone, the robot 

will respond with designated speeds (generally slow) and stop when the worker comes 

too close. 

4. Power and Force Limiting 

Robots can work alongside humans without any additional safety devices. The robot 

can feel abnormal forces in its path. In fact, it is programmed to stop when it reads an 

overload in terms of force. The design is such that it is capable of dissipating forces in 

case of impact on a wide surface, which is one of the reasons why the cobots are 

rounder. They also don't have exposed motors. 



In summary, the benefits of collaborative robots are: 

1. They reduce the accidents and incidents rates. 

2. They reduce ergonomic problems for people. 

3. They are easy to program and easy to implement. 

4. They are capable of performing a wide variety of operation 

6.7. Servitization 

(Adapted from original source reference 27) 

Servitization was created with the aim of understanding and satisfying customer needs in the 

best possible way. The provision of an offer, which includes both products, machines, plants 

and services in order to optimize the complete package given to the customer. 

With Servitization, the Provider becomes a system capable of delivering to the end customer a 

range of services integrated with the product, so as to be able to act effectively and in a 

responsible way in the after-sales period. 

The company presents itself to its customers through the services offered, no longer with its 
product: Anything as a Service (XaaS) as example “Availability as a Service. 

There is a change in the strategic value given to the service with respect to the value of the 

product and this change has a substantial impact on all levels of the organization, operations 

and above all on Maintenance. 

The topic is given by its close relationship with the connection with the enabling Technologies 

4.0. 

The "invoice", therefore, is not issued for the transfer of ownership, but for the rent of a specific 

machine or device by the customer paying for the use and performances achieved. 

In the new “circular” approach to business activities, for the manufacturer and supplier of 

machinery, systems and services, the benefits can be different. 

The benefits for technology providers are: 

1. The market grows with the rental of tools and services. 

 

2. It is possible to build customer loyalty, because the relationship does not end with the 

purchase of the asset but continues over time in relation with performances and the 

company growth. 

 

3. The manufacturer maintains greater control over system configurability and 

development. 

 

4. The manufacturer takes care of the maintenance for all the useful life of the machines. 

 

5. Fault management is centralized. 



In the same way, there are also important advantages for those who rent: 

1. Can access and use the tool and its service without having to bear the expense of buying 

it, with immediate and overall costs much lower. 

 

2. Having no ownership, it does not even suffer the obsolescence of the machinery. The 

newer the technology, and not yet stable and evolved, the more advantageous 

servitization is, also because there is not the risk of its obsolescence. 

 

3. Can therefore change and renew them with much more ease and flexibility, according 

to different needs that change overtime. 
 

4. Can try to use machinery and solutions even on an experimental basis, and not 

definitively with regard to startup, test runs and useful life. 

 

5. It is possible to achieve better performance because the user pays for achieved results. 

 

6. Because the maintenance needs are outsourced; it is possible to reduce the 

maintenance fixed cost and spare parts inventory. 

 

7. The enabling technologies 4.0 are already installed and updated by the provider 

because it is his interest to supply an excellent machine. 

It is possible to reduce the Capital Expenditures paying the global Contract rent and 

maintenance services. 

The leasing in reality always existed: the striking novelty is that new technologies 4.0 make 

now the mechanism much more profitable and manageable. 

6.8. Cloud Computing Applications 

The drastic increase in digitalization of the of everyday Operations and Business 

activities, produces a higher demands of information systems and a consequent steadily 

growing need for computing power and storage capacity. 

Cloud computing can help to support many activities in operation and maintenance. 

6.8.1. Physical Assets Improvements 

In discrete industrial environments, physical Asset development involves many complexities. 

These activities include dealing with iterative design, product testing, installation and 

implementation works. Cloud computing can help simplify these processes by providing 

companies with enough computing resources to handle complex tasks. 

6.8.2. Maintenance Engineering 

The cloud supports Digital Twin or BIM for engineering studies, simulations, 

communication and collaboration. Cloud computing offers the ability to work remotely 

through configured devices and the ability for dozens of stakeholders to contribute in real time. 



This leads to greater efficiency in project management and in giving, receiving and integrating 

feedback into projects to do fast and in an effective way. 

6.8.3. Technical & Organization Activities of Maintenance 

Cloud computing provides an excellent platform for maintaining historical data of failures, lost 

time, work done, problem solved, safety performance, good maintenance practices, historical 

and updated technical-organizational- economical KPI, procedure, inventory lists, Planning 

and Scheduling, etc. 

6.8.4. Implementation of Technologies 4.0 

The adoption of 4.0 technologies and related implementation requires a high direct 

computational power that cloud computing provides by accelerating digitalization in a reliable 

and secure and highly available way. 

6.8.5. Improving Automated Processes 

Automation relies on data analytics and, in advanced cases, artificial intelligence to function 

without the constant assistance of humans. 

Cloud computing provides an excellent ecosystem for collecting data and integrating it into the 

applications that drive industrial automation ensuring that automated processes can respond 

in real time and in appropriate ways. 

6.8.6. Achieving Security Measures 

Successful data breaches or cyber-attacks can lead to shutdowns in continuous manufacturing 

processes. Once the data used in deploying industrial automated systems is lost, automation 

stops. Cloud computing reduces cybersecurity risks associated with Operations and 

Maintenance and other industrial processes in a variety of ways. Among these ways is the use 

of firewalls and encryption to protect a company's data from attack. Cloud computing 

providers also offer risk mitigation packages while providing security patches to ensure the 

safety of manufacturing data. The cloud also provides a more secure platform for discrete 

manufacturers to secure sensitive manufacturing data. Cloud service providers are also 

integrating policies such as the laws of the General Data Protection Regulation (GDPR) into 

their platforms. This can help companies consistently stay on the right side of the law without 

having to put in extra effort to integrate such laws. 

6.9. Wearable Devices for Maintenance 4.0 

(Adapted from original source reference 24) 

The wearables are small electronic devices, which comprise one or more sensors and are 

associated with clothing or worn accessories such as watches, wristbands, and glasses. 

Wearables come with some sort of computational capability, which enables them to capture 

and process data about the physical world. In several cases, they also provide the means for 

presenting data in some type of display. 



The most common types of wearable devices that are used in the industrial activities include: 

 Smartwatches, which are usually connected to the users’ smartphones and provide 
functionalities such as messaging and handling of calls and emails. Some smartwatches 

are also equipped with sensors that can provide information about the worker and the 

surrounding environment (e.g., temperature, air quality). Hence, they serve as a useful 

tool for workers’ communication during field service processes, including access to 

information about the context of the field task. 

 

 Smart Glasses, Clothing and Textiles, which are typically special types of garments that 
comprise sensors and wireless devices. They resemble regular clothes, but are able to 

transmit information such as heart rates and stress levels to the user’s smartphone. 

This application provides: 

 a non-obtrusive way to obtain information about the workers’ status for safety 

reasons. 

 

 a host of useful functionalities for field service and maintenance, including 

Enhanced Cyber-Representations of the task, visual information about the field 

service or maintenance works at hand in the form of instructions, annotations and 

recommendations. 

Furthermore, field workers can engage in more complex tasks that they could hardly complete 

before, which reduces the need for on-site service and technicians. 

6.10. Wearable Applications 

With so many wearable devices and functionalities at hand, there are many possibilities to use 

wearable technologies to achieve better performance of maintenance processes increasing 

safety, effectiveness, quality and productivity in many different operative works as for 

example: 

1. Provision of enriched information about the maintenance task takes advantage of 

virtual and augmented reality information to help workers complete their tasks. 

In most cases, the delivery of enriched information can benefit from the integration 

with some knowledge management system, which provides information about how to 

best complete a task from technical and quality point of view within a specific 

maintenance context. 

 For example, a knowledge management system can classify errors and deliver 
information about next steps or even navigating in the field. 

 

 Likewise, the worker’s location and asset position can be taken into account in 
order provide rapid access to the right information in an instruction manual. 

 

 As another example, workers can be presented with defect reports and 
documentation for similar errors, through access to a knowledge base. 



Overall, wearable devices enable workers to access a wealth of relevant information 

and documentation in a timely and context- aware fashion. At the same time, this 

information can be presented in an ergonomic and user-friendly manner via their 

wearable devices. 

2. Improved communication and interaction between workers and devices. 

Wearables facilitate communication between maintenance workers, which increases 

safety and productivity, while reducing service times as well. Field workers can take 

advantage of wearable devices in order to communicate field information and inquiries 

to maintenance engineers and other members of the workforce. 

Communications are fast and context-aware, as they can include both workers’ status 

and information about the surrounding environment. Information can be transmitted 

not only in textual form, but in multimedia format (i.e. audio, video) as well. 

The combination of the above functionalities can support many different situations, 

such as: 

 Communication between field technicians and remote experts in order to perform 
service diagnosis in real-time. 

 

 Voice-enabled access to asset management systems and knowledge bases in order 

to obtain more information about an error. 

 

 Voice and video-enabled logging of service details by the worker. 

 

 Flexible, remote collaboration with technicians and other members of the 
workforce. 

 

 Automated provision of safety recommendations and alerts to workers. 

 

 Flashlight functionality, which helps technicians to see in dark areas while on job 
sites. Flashlights take advantage of the screen of the wearable device, which is 

lightened up to its full capacity. 

 

 Tracking of workers’ biometric and contextual data for safety, which keeps track 
of body temperature, heart rates and other characteristics of workers, in order to 

make sure that these parameters remain within certain thresholds. 

With so many possibilities at hand, the deployment of wearables technologies in 

maintenance is not simply a matter of selecting and deploying the proper technology. 

Rather, it is about designing the proper wearables-enabled maintenance process that 

will optimize safety and productivity in order to meet tight turnaround schedules and 

operational deadlines. 

In most cases, this requires some reengineering of existing maintenance organization 

and practices, to integrate the wearables with Computerized Maintenance 

Management System and Manufacturing Execution System. 



6.11. Example of Machine Learning Application 

6.11.1. Introduction 

The Smart Factory is a fab-lab facility created by the Automotive Intelligent Center (AIC) and 

the Spanish company Siste plant. It is located in Vizcaya (Spain) and its main mission is to 

develop and test new technologies that allow the hybridization between the physical world 

and the digital world. One of these technologies is Machine Learning. 

6.11.2. The Manufacturing Process 

The Smart Factory process is described by the fig.1 below: press, dimensional control, 

Welding and final quality control of welding points. 

Specific variables that are embedded in the PML parameter can also be monitored: 

6.11.2.1. PML Visualization and Forecast 

PML values can be monitored in real time and graphically visualized to facilitate the decision 

making. Moreover, a prediction of the future behaviour of the PML (for a time t: 1 minute, 1 

hour, 1 day…) is provided by machine learning software. 

 

 

Figure 6.2. PML visualization and forecast. 

 



6.11.2.2. Visual Representation On PML Value 

The prognosis is made by applying temporary series and machine learning regression models. 

 

 

Figure 6.3. Visual representations. 

 

6.11.2.3. Variable Process Real Time Monitoring 

Values specific variables that are embedded in the PML parameter can also be monitored... 

 



 

Figure 6.4. Variable process real time monitoring. 

 

6.11.2.4. Optimization Tools 

Finally, additional optimization tools are available to perform a deep analysis of the causes of 

this deviation: impact of inputs on outputs analysis and related r 

 

 



 

Figure 6.5. Optimization tools. 

 

Metal raw material is pressed to form the main body of the piece, that follows a first quality 

control to check different dimensions. Next to this, some parts are added by welding and, 

finally, a quality control to check the robustness of the welding joints is performed. 

The manufacturing line is completely automated and the transport of the pieces between the 

several processes is carried out by an Autonomous Guided Vehicle (AGV). Moreover, there 

exists unitary traceability, hence every piece that is manufactured has its own and unique 

history that is digitally recorded. 

A photograph of the physical installation and the manufactured pieces are shown in the 

following Figure 6.6. 

 



 

Figure 6.6. Smart Factory and manufactured piece. 

 

6.12. Welding Process Health Monitoring 

Welding is the critical process of the smart factory. Therefore, a real-time health monitoring 

system has been implemented by the use of machine learning software. 

The first step to implement a real-time Health Monitoring system is to perform an RCM 

(Reliability Centered Maintenance) analysis in order to define the functional failures, the 

several failure modes, their causes and the related variables to be measured (see Figure 6.7). 

 

 



 

Figure 6.7. Process scheme. 

 

The second step is to define the measurement system to measure the variables related to the 

failure modes. For this, IoT sensors, MES (Manufacturing Execution System) data capture and 

CMMS (Computerized Maintenance Management System) parameters are used. 

The list of some identified failure modes is shown below in Table 6.1: 

 

Table 6.1. Sample of failure modes. 

Failure modes 

Lack of cooling liquid 

Degradation of cooling liquid 

Deviation of Electric arc from standard parameter 

Lack of atmospheric pressure 

Incorrect atmospheric pressure (higher/lower) 

Blocked filter 

Lack of welding wire 

Blocked welding wire 

Irregular advance of the welding wire 

Strange objects presence 

Fixing tools maladjustment 

Loss of pressure 

Wear of welding torch 

Dirt on welding torch 

 

The third step is to define an indicator that represents the global health condition of the 

welding machine: it is called Process Mastery Level (PML). It is a normalized parameter (values 

between 0 and 1) that involves the several variables that affect the performance of an asset of 



its systems and subsystems. The calculation of the global PML of the welding machine is 

performed by aggregation of the individual PML of each of its systems (see Figure 6.8). 

 

 

Figure 6.8. PML hierarchy based on assets tree structure. 

 

A PML value equal to 1 means that the health state of the machine is perfect. Values lower than 

1 means that there exist some abnormal conditions (see Figure 6.9). 

 



 

Figure 6.9. PML scales. 

 

The PML calculation is done in real time by the Machine Learning software and data are 

recorded to perform a historic database (see Figure 6.10). 

 

 

Figure 6.10. PML database. 

 



PML values can be monitored in real time and graphically visualized to facilitate the decision 

making. Moreover, a prediction of the future behaviour of the PML (for a time t: 1 minute, 1 

hour, 1 day…) is provided by machine learning software. 

 

 

Figure 6.11. Global logic of health monitoring system. 

 

6.13. Integration with CMMS 

The health state of the asset is being calculated and real-time monitored. When there is a 

significant deviation from the standard values of health, a request for work order is 

automatically triggered and sent to the CMMS, containing specific information for the 

intervention (PML of each system and subsystem, deviated parameters and related failure 

modes, standard values, etc.). The request for order is converted into a work order and it is 

planned in the CMMS for a rapid response to the potential problem. 

In conclusion, a complete Health Monitoring application consists of an integrated system 

where the machine learning tool has a capital importance. But Machine Learning software is 

not an isolated system, on the contrary, all its potential is achieved only if it is integrated with 

MES and CMMS systems, as shown in Figure 6.12. 

 



 

Figure 6.12. Architecture for a complete health monitoring system. 
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Abstract 

Digital twin is a modern concept, in which a digital replica of a real product and structure is 

developed, and a simulation is performed to test the product behavior under service 

conditions. In the presented paper the digital twin method is used for making assessments of 

safety, durability and reliability of bridge structures. Although some numerical modelling is 

often done when an existing bridge is evaluated, it usually does not involve the simulation of 

real behavior under service and environmental loads including chloride ingress, reinforcement 

corrosion and assessment of ultimate load carrying capacity. The digital twin concept in 

addition includes an important aspect of the digital twin calibration and validation using the 

real monitoring data. 

The paper presents a chemo-mechanical model covering initiation and propagation of 

chlorides or carbonation. This model is combined with the nonlinear modelling of cracking, 

bond failure and reinforcement yielding (Cervenka and Papanikolaou et al., 2008). The paper 

extents the previously developed model by the authors Hájková et al. (2019), Jendele, Šmilauer 

and Červenka (2014). The models were implemented in ATENA software and are validated on 

experimental data. The developed models can be efficiently used in large scale analysis of real 

engineering problems as demonstrated on applications to an existing bridge structures in 

Germany. The example simulation using the digital twin concept show time development of 

reinforcement corrosion due to chloride ingress, and their impact on the evolution of structural 

safety and reliability (Cervenka et al., 2020(a)). 

Keywords: Durability, Concrete Bridges, Corrosion, Chloride ingress, Finite element analysis. 
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8.1. Introduction 

In reinforced concrete structures, the reinforcement corrosion due to carbonation and chloride 

ingress are important damaging mechanisms. They can significantly reduce the service life of 

reinforced concrete structures (Tang, Utgenannt and Boubitsas 2015). Chloride ingress is 

usually the consequenceof de-icing, sea water and salts in coastal areas. Ions from chloride 

penetrate through the concrete binder and their diffusion is governed by several factors such 

as environmental boundary conditions, concrete cover thickness, cement type, water-to-

binder ratio (w/b) (Kwon et al. 2009, Liu and Weyers 1998). 

The reinforcement corrosion process is generally divided into two time phases; the initiation 

(induction) period ti and the propagation period t p (Figure 8.1). The initiation period of the 

damaging mechanisms was described and validated in the earlier paper by Jendele, Šmilauer 

and Červenka (2014) and results show strong influence of crack width on the transport 

properties and on the acceleration of the damaging mechanisms. The cracks of 0.3 mm 

decrease induction time approximately 6 times for carbonation and approximately 9 times for 

chloride ingress from sea water. Preventing macro-cracks and designing proper concrete is 

essential for durable concrete structures (Cervenka et al., 2020(b)). 

 

 

Figure 8.1. Typical phases of the corrosion process (Cervenka et al., 2020(b)). 

 

The presented model covers also the propagation period t p, when reinforcement corrosion 

takes place. During this period, reinforcement cross-sectional are decreases and is 

accompanied with growing corrosion products. 

The presented approach combines the model by Kwon et al., 2009 for the initiation phase with 

the effect of crack width by Liu and Weyers (1998) for the propagation period. The presented 

corrosion model is combined with the mechanical model for concrete nonlinear behavior by 

Červenka and Papanikolaou (2008). 

The validation as well as more details about the individual components of the presented 

models is described in Hájková et al. (2019) for the corrosion model and in Červenka and 

Papanikolaou (2008) for the mechanical model. This paper focuses on practical applications of 



the presented models on a bridge Germany within the digital twin concept and using the global 

safety formats for nonlinear analysis according to Model Code 2010 (2011). 

8.2. Modelling of Structural Strength and Durability 

The above models are implemented in ATENA software (Cervenka et al., 2020(c)), using multi-

physics approach for mechanics and transport. It predicts induction time and extent of 

corrosion for chloride ingress, and calculates remaining steel area. The mechanical behavior 

and concrete cracking is simulated using the fracture-plastic model of Červenka et al., 1998 and 

Červenka and Papanikolaou et al., 2008. It combines plasticity based model for compressive 

failure and smeared crack model with tensile softening and crack band approach for tension 

(Figure 8.2). The reinforcement corrosion is evaluated based on the parameters of the 

surrounding environment that are specified as a special boundary condition as showing Figure 

8.3. Figure 8.3 shows a simple example of a short cantilever whose bottom surface is subjected 

to chlorides. A mechanical load initiated cracks starting at the bottom surface. For each 

reinforcement, the closest distance to the surface subjected to chlorides is calculated. The 

initiation phase as well as the subsequent corrosion phases are evaluated assuming a 1D 

transport process along this closest distance considering also the width of a possible surface 

crack. Based on the amount of corrosion, the effective reinforcement area is reduced, which 

can directly affect the load carrying capacity or the deflections of the numerical model. This 

approach can simulate the effect of structural degradation in a very effective and efficient way 

(Cervenka et al., 2020(b)). 

 

 

Figure 8.2. (left) three-parameter Menetrey and Willam failure criterion for compression, 

(right) crack band and tensile softening model for tension (Cervenka et al., 2020(b)). 

 



 

Figure 8.3. Corrosion modelling in finite element nonlinear analysis (Cervenka et al., 2020(b)). 

 

The initiation period covers the time before the concentration of chlorides exceeds a critical 

value in the place of reinforcement. One dimensional chloride transient ingress into concrete, 

with an initially zero chloride content can be described according to Kwon et al. (2009) as: 

 

𝐶(𝑥, 𝑡) = 𝐶𝑆 [1 − 𝑒𝑟 𝑓 (
𝑥

2√𝐷𝑀(𝑡)𝑓(𝑤)𝑡
)]                                                                                            (8.1) 

 

where Cs is the chloride content at surface in [kg/m3], DM(t) is the mean (averaged) diffusion 

coefficient at time t [m2/s], x is the distance from the surface in [m] and f(w) introduces 

acceleration by cracking. (equals to one for a crack-free concrete). Cs and C(x,t) can be related 

to a concrete volume or to a binder mass. The model is in detail described in the previous paper 

by Hájková et al (2019). 

The propagation phase is controlled by the corrosion rate. For chloride ingress it is dependent 

on the corrosion current density icorr [µA/cm2] and on chlorides concentration in the concrete. 

The model predicts the amount of corroded steel during the propagation period tp, which is 

governed by Faraday’s law according to Liu and Weyers (1998) by the following formula: 

 

�̇�𝑐𝑜𝑟𝑟(𝑡) = 0,0116 𝑖𝑐𝑜𝑟𝑟(𝑡), 𝑥𝑐𝑜𝑟𝑟(𝑡) = ∫ 0,0116 𝑖𝑐𝑜𝑟𝑟(𝑡), 𝑅𝑐𝑜𝑟𝑟𝑑𝑡, 𝑑(𝑡)
𝑡

𝑡𝑖𝑛𝑖

= 𝑑𝑖𝑛𝑖 − 𝜓2𝑥𝑐𝑜𝑟𝑟(𝑡)                                                                                                       (8.2) 
 

 

where �̇�𝑐𝑜𝑟𝑟 is the average corrosion rate in the radial direction [µm/year], icorr is corrosion 

current density [µA/cm2] and t is calculated time after the end of induction period [years]. By 

integration of equation (8.2), we obtain the corroded depth for 1D propagation 𝑥𝑐𝑜𝑟𝑟 . Rcorr is a 

parameter, which depends on the type of corrosion [-], uniform corrosion (carbonation)         

Rcorr = 1, pitting corrosion (chlorides) Rcorr = <2; 4> according to Gonzales et al., 1995 or            



Rcorr = <4; 5.5> according to Darmaw an and Stewart (2007). d(t) is the evolution of a bar 

diameter in time t, dini is initial bar diameter [mm], ψ is uncertainty factor of the model [-], 

mean value ψ = 1 and 𝑥𝑐𝑜𝑟𝑟 is the total amount of corroded steel. The corrosion rate for 

chlorides is affected by concentration of chlorides in the concrete. The calculation of the 

corrosion current density was formulated by Liu and Weyer’s (1998) model: 

 

𝑖�̇�𝑜𝑟𝑟 = 0,096 𝑒𝑥𝑝 [7,98 + 0,7771 𝑙𝑛(1,69𝐶𝑡) −
3006

𝑇
− 0,000116 𝑅𝐶 + 2,24𝑡−0,215]           (8.3) 

 
𝑅𝐶 = 𝑒𝑥𝑝[8,03 − 0,549 𝑙𝑛(1 + 1,69𝐶𝑡)]                                                                                               (8.4) 

 

where icorr is the corrosion current density [µA/cm2], Ct is the total chloride content [kg/m3 of 

concrete] at the reinforcement location, which is determined from 1D non-stationary 

transport, T is temperature at the depth of reinforcement [K], RC is the ohmic resistance of the 

concrete cover [Ω] (Liu Y., et al. 1996) and t is the time after the initiation [years] (Cervenka et 

al., 2020(b)). 

8.3. Application Example 

The presented model was applied to Vogelsang bridge in Germany as a part of the international 

Eurostars-2 project E!10925 “cyberBridge”. It is a concrete bridge over the Neckar River in the 

city of Esslingen, Germany. It is a major part of the city’s infrastructure with a high impact on 

the regional traffic. The bridge consists of eight partial structures built in three different 

construction types. The bridge was built between the years of 1971 and 1973. The total length 

is approx. 595m and it has a totalarea of 9,744m² including ramps. Overview of the structure 

is shown on the Figure 8.4. 

 



 
Figure 8.4. Aerial image of Vogelsangbrücke Esslingen, Germany [source: maps.google.com]. 

 

During the last major check, many damages have been detected, that influence the structural 

safety, the safety to traffic and the durability. Due to the damages, refurbishment was urgently 

needed. 

8.4. Monitoring 

Monitoring system was placed on “D part” of the bridge as indicated by the red circle in the 

right bottom corner of Figure 8.4. This part of the bridge was used as a pilot project to evaluate 

the capabilities of the proposed approach. It is a two-span concrete superstructure with a total 

length 27 m. Non-prestressed reinforced concrete beam is supported as continuous beam with 

two spans 13.8 and 13.2 m. Height of the beam is 0.6 m. iBWIM monitoring system was used as 

developed and further extended and enhanced during the “cyberBridge” project. Monitoring 

spiders were placed on the bottom side of the slab. Each spider consists of five iBWIM sensors 

and one data collector. The sensor ensemble consists of one laser rangefinder; five strain 

gauges arranged in a row transverse to the road; and two strain gauges which are placed on 

either side of the row. The gauges in the row perform the actual measurement; the two adjacent 

gauges are used for triggering a measurement and estimating the speed of the vehicle; the laser 

rangefinder is used to detect and localize the vehicle axles. The group of sensors produce just 

one average value of micro-strain on each side of the slab. Both measuring spiders are shown 

on the Figure 8.5 and Figure 8.6 (Cervenka et al., 2020(a)). 

 



 
Figure 8.5. Position of spiders on the slab (Cervenka et al., 2020(b)). 

 

 
Figure 8.6. Cross-section of the bridge showing the position of the iBWIM sensors (Cervenka 

et al., 2020(a)). 

 

The monitoring was performed over an uninterrupted period lasting from Jan. 16 – Mar. 17, 

2019, i.e. over 61 days. The iBWIM monitoring system provides valuable information for the 

durability assessment of the entire bridge including the other parts like the main river bridge. 

Major results like the number of heavy vehicles (trucks) crossing the bridge, the typical gross 

weight of the trucks, typical length of the trucks and number of axles and their weight were 

identified as shown in Figure 8.7. Furthermore, the probability distribution of the loading 
events were calculated (Cervenka et al., 2020(a)). 



 

 

Figure 8.7. Distribution of gross weight and axle weight of vehicles (Cervenka et al., 2020(a)). 

 

8.5. Development and Calibration of the Digital Twin 

The data obtained by the monitoring were also used for the calibration of the numerical model 

that was developed in the software ATENA (Cervenka et al., 2020(b)). Just one half of the bridge 

was modelled because of symmetry and connecting between two slabs in the middle of the 

bridge was neglected. The finite element mesh consisted of hexahedra quadratic isoparametric 

elements with the typical size of about 0,5 m. The bridge is modelled by solid elements 

reinforced by reinforcing steel bars (shown on Figure 8.8 and Figure 8.9). Figure 8 also shows 

the model of the passing truck, which was used for the model calibration using the heavies 

vehicles as detected by the iBWIM monitoring system (Cervenka et al., 2020(a)).. 

 

 

Figure 8.8. Numerical model of the bridge and a passing truck (Cervenka et al., 2020(a)). 

 



 

Figure 8.9. Overview on the reinforcement in the concrete slab showing the detail of the 

reinforcement arrangement above the middle piers (Cervenka et al., 2020(a)). 

 

Initial material parameters were set based on structural diagnostic and on the original bridge 

design specification. In the original design the concrete B450 was assumed, while the 

compressive tests on drilled cores show the compressive strength of 𝑓𝑐,𝑐𝑦𝑙 = 35,5 𝑀𝑃𝑎 and 

elastic modulus 𝐸𝑐 = 33,3 𝑀𝑃𝑎. These initial parameters were used in a parametric and 

optimization study to identify the most suitable material parameters for the subsequent 

durability and bridge life prediction analysis. The optimization was performed using the 

monitoring data obtained during the monitoring process as described in Section 4. The initial 

analyses showed that cracks must exists in the bridge in order to match the measured strains, 
therefore the main optimization parameters were selected to be tensile strength 𝑓𝑡 and fracture 

energy 𝐺𝐹 . The final optimized set of parameters is shown in Table 8.1 (Cervenka et al., 

2020(a)). 

 

Table 8.1. Optimized concrete material parameters (Cervenka et al., 2020(a)). 

 

 

 

 

 

 

 

 

Figure 8.10 shows the typical deflection and crack development during the simulation of a two 

axle truck passing with gross vehicle weight of 27.6 tons. In this case the monitoring system 

detected the strain of 77 µs trains (group 203) during the truck passing and 30 µs on the 

neighboring lane (group 204) (see Figure 8.6). In the optimized numerical analysis, the 

Material Parameter Value 

Young´s modulus E [GPa] 33.3 

Poisson´s ratio ν [-] 0.2 

Compressive strength fc [MPa] -35.5 

Tensile strength ft [MPa] 3.24 

Fracture energy GF [N/m] 144 

Plastic strain at compressive strength εcp [-] -0.00123 

Critical compressive displacement wd [mm] -0.5 

Reduction of compressive strength due to cracks [-] 0.8 



calculated strains at the location of group 203 sensors was 74 µs and 43 µs at sensor group 

204. The average error was about 19% from the monitoring and numerical results for the 

optimized set of parameters (Cervenka et al., 2020(a)). 

 

 

Figure 8.10. Crack width after loading by weight of the truck (Cervenka et al., 2020(a)). 

 

8.6. Prognosis of Structural Durability 

The calibrated model according to the Section 2.5 was used for a prognosis of structural service 

life using the durability model described in Section 2.2. The same numerical model was used 

as described in Section 5. In the durability assessment, the bridge is loaded by the permanent 

load and average life/traffic load as determined by the monitoring data in Section 2.4. Then it 

is subjected to the environmental actions: chlorides: 𝐷𝑟𝑒𝑓 = 1,2𝑒−7 𝑚2/𝑑𝑎𝑦, 𝑡𝐷𝑟𝑒𝑓 =

3.650 𝑑𝑎𝑦𝑠, 𝑚𝑐𝑜𝑒𝑓𝑓 = 0,37, 𝑡𝑚𝑐𝑜𝑒𝑓𝑓 = 10.950 𝑑𝑎𝑦𝑠, 𝐶𝑙𝑐𝑟𝑖𝑡 = 0,004, 𝑓𝑡,𝑐ℎ = 3,2 𝑀𝑃𝑎, 𝑊𝑑 =

0,001 𝑚, pitting corrosion 𝑅𝑐𝑜𝑟𝑟 = 2. Chloride surface concentration Cs was applied differently 

for the top surface Cs = 0.009 and for bottom surface Cs = 0.0055. The corrosion rate after 

concrete spalling was assumed at 35 μm/year (Cervenka et al., 2020(a)).  

The environmental action of chloride ingress was calculated for several duration times: 25, 50, 

75, 100 and 150 years. At these times the numerical models are loaded by the most critical ULS 

load combination. The load is then increased all the way up to failure. This is accomplished by 

using the Arc-length nonlinear solution methods originally proposed by Crisfield (1983), which 

allows for automatic reduction of the applied load such that a peak load can be detected in load 

controlled numerical analysis. All models have been calculated with two sets of material 

parameters (characteristic and mean) such that it is possible to applied the global resistance 

method ECOV according to model code 2010 (2011) Section 7.11.3.3.2. 

The main results from the durability analysis for the case using mean material properties are 

shown in Figure 8.11. In this figure, the time development of structural capacity is evaluated 

using the ECOV method (Model Code 2010, 2011). It shows that the design resistance (solid 

red line) will drop below the design load level (ULS curve) in 110 years. This number can be 

interpreted as the service life of the structure. If proper rehabilitation is performed in this 

period, the service life can be even extended above this time. The current age of the structure 

was 45 years, so this would mean additional 50-60 years. This was more than the expected life 

of 15-20 years based mainly on traditional visual observation and expert judgement (Cervenka 

et al., 2020(b)). 



 

 
Figure 8.11. Comparison of durability based on reliability of material (Cervenka et al., 

2020(b)). 

 

8.7. Conclusion 

The paper presents an application of digital twin concept which combines monitoring with 

numerical simulation to develop a calibrated numerical model of an existing bridge structure. 

The calibrated numerical model was used to perform durability assessment of the investigated 
bridge and predict its service life considering the structural degradation due to corrosion. In 

this pilot investigation is was possible to prove the service life of additional 30-45 years over 

the initially expected period. In practice it is critical to complement numerical predictions, by 

extensive on- site investigation and monitoring program. 
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